Relativistic Fluids Morton

Introduction to Relativistic Fluids

Abstract
These notes follow a lecture I gave at the Vanderbilt Graduate Student Seminar on
November 10, 2025. In these notes, I will outline the basic propositions of classical
fluids. Then, I introduce relativistic inviscid fluids: the relativistic Euler equations.
There is special attention paid to the free-boundary situation with the physical vacuum
condition. Finally, I consider the linearized physical vacuum boundary problem and
show the energy estimate and existence of solutions.

1 Classical Fluid Dynamics

A fluid is defined as a liquid or a gas. Water and air are both examples of a fluid. Fluid dy-
namics studies how different fluids behave in various regimes. The field spans across various
disciplines: engineers, physicists, and mathematicians all have interests in the subject. The
interests of each group vary rather dramatically, however. As mathematicians, we are firstly
interested in the equations of motion of fluid regimes, which manifest as partial differential
equations. We now ask the most basic question: when do solutions to the equations of mo-
tion for a fluid exist? Before studying fluids in a relativistic regime, we briefly review what
are known as classic fluids. By this, we mean fluids that arise from Newtonian mechanics.

We now describe the basic setup of the classical fluid problem. In general, we work
over a manifold M; in this case, consider the manifold as R3. Let Q C R3. We will use
the coordinates (z1, s, x3) to describe the physical space of the fluid. We also will use the
variable ¢ to represent time in the evolution equations. We need to define some quantities
that are used to describe the motion of a fluid.

Definition 1.1. We describe the following macroscopic quantities. The fluid’s velocity
is given by

u:RY x R® = R3.
Note that u is a vector field that has three components which we denote as wu(t,z) =
(u1(t, @), us(t, ), us(t,z)). The fluid’s density is given by

0:RT xR* = R.

The fluid’s pressure is given by
p:RTxR> =R

1.1 The Equations of Motion

The equations of motion arise from conservation laws of classical physics. Specifically, they
arise from the conservation of mass and conservation of momentum. Mathematically, these
are given by

0
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the bulk kinematic viscosity of the fluid. Think of this as a measure of how fluid particles stick
to the surfaces they touch. These equations are known as the Navier-Stokes Equations.
Equation [If is known as the conservation of mass or continuity equation. Equation [ is
known as the conservation of momentum equation. There are two simplifications that are
often made to reduce the Navier-Stokes equations. The first is a restriction on the variable p.
There are some fluid regimes in which the fluid’s density can be treated as constant. Think
of a glass of water. Throughout the glass, the change in density is negligible. We call this
type of fluid incompressible. If instead the density is not constant, we call this type of
fluid as compressible. Assuming that ¢ = ¢ € R™, equation [1| becomes V - u = 0. In other
words, the incompressibility condition yields that u is a divergence free vector field. We can
therefore write the incompressible Navier-Stokes equations as

where V = is the vector field nabla, v is the kinematic viscosity, and £ is

V.ou=0 (3)
ou
5 (- V)u+ Vp—viu=0. (4)

The second simplification we make pertains to the viscosity v. For regimes in which the
friction forces can be neglected, like a vehicle with low air resistance in space, the fluid is
called inviscid. Such a fluid is also called perfect. In the classical sense, a perfect fluid is
described the Euler equations and given by

V-u=0 (5)

%—i—(u-V)u—%Vp:O. (6)

1.2 The Material Derivative

We now motivate the idea of the material derivative. Consider a scalar field f(t,z) and
a velocity u(t,z). We calculate the flow of the vector field u via

dx
dt
Taking the time derivative of f, we have

d

0 dx

= %f(t,x)—l—u-Vf.

We define the following quantity as the material derivative with respect to a velocity field wu:

= u(t, ).

0
Dy =—+4u-V. 7
tT ot ()
We should think of the material derivative as following the material particle in the flow.
In other words, the time derivative measures the local change over time while the material
derivative measures the change as a particle moves in a vector field.
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We can use the material derivative to rewrite the incompressible Euler equations as

V-u=0 (8)

1.3 When does the classical fluid model fail?

The Navier-Stokes equations describes above arise from Newtonian mechanics. However,
there are certain situations in which the effects of relativity cannot be neglected by the
Newtonian model. Such examples include fluids traveling at speeds close to the speed of
light or fluid’s influenced by large gravitational fields. It is the latter that motivates the
introduction of a relativistic fluid in the forthcoming sections. Consider a star with a
large gravitational field, such a neutron star. This will be the main motivation.

2 Introduction to the Relativistic Euler Equations

We now derive the relativistic Euler equations in Minkowski space. First, we take a short
detour into what we mean by special relativity.

2.1 The idea of relativity

We first give a general overview of what relativity means. There are two theories of relativity:
special relativity and general relativity. For the focus of this talk, we respect ourselves to the
study of special relativity. In the theory of special relativity, the speed of light is a constant
and the same for any body moving in space. Nothing can go faster than the speed of light.
The rest of the theory can be thought as the consequences of this fact. We will not dwell on
this topic anymore as it not pertinent to the forthcoming mathematics.

2.2 Objects of Special Relativistic Fluids

We are interested in studying a prefect fluid in the background of special relativity. In the
forthcoming discussion we assume we are working on a smooth manifold M with a Lorentzian
metric g. We first introduce the energy-momentum tensor for a perfect fluid.

Definition 2.1. The energy momentum tensor for a perfect fluid is given by the following
symmetric two-tensor on a manifold M

Top = (D + 0)Uatip + PGas, (10)

where o = o(t,z) : M — R is the fluid’s energy density, p : M — R is the fluid’s pressure,
u=u(t,x) : M — TM is the fluid’s four-velocity, and g = g(¢,z) is a Lorentzian metric
on M.

Before continuing, we need to address some notation that will be used throughout these
notes. We work with coordinates of the form {z®}3_, where one thinks of z° as the time
variable and {z', 2% 23} as the spatial variables. In general, Latin indices range from 1 to
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n and Greek indices range from 0 to n. If we simply write x, it is usually meant to indicate
the spatial components of z¢.

Definition 2.2. We define the Baryon current as the following vectorfield J : M — T'M
given by
\704 = NUg, (11)

where n = n(t, z) is called the Baryonic density.

Definition 2.3. The pressure, energy density, and Baryonic density are related through an
equation of state of the form

p=ple,n). (12)

If the pressure is a function of only the energy density, we say that the fluid is barotropic.

An example that we will use frequently is that of a polytrope. We define the equation of
state for a polytope as

plo) = o k>0 (13)

If the equation of state is a function of more than the energy density, we call it non-
barotropic.

2.3 The relativistic Euler equations

Before we state the equations of motion, we have to introduce an important property of
the velocity. Note that this is a purely physical statement. The velocity is subject to the
following normalizing constraint equation:

Gapu®u’ = —1. (14)

This property will be used over and over again in the forthcoming calculations. The as-
sumption on the square norm of the four-velocity can be understood as follows. Recall that
in relativity, observers are defined by their (timelike) world-line up to reparametrizations.
More precisely, the norm of a tangent vector to the world-line has no physical meaning if
the parameter is not specified. Thus, we can choose to normalize the observer’s velocity to
—1. In the case of a fluid, we can identify the flow lines of u with the world-line of observers
traveling with the fluid particles. The normalization gives that u is timelike, so fluid particles
do not travel faster than or at the speed of light. It also gives rise to the following important
identity. Taking the covariant derivative of the above equation provides

u*Vau, =0, (15)
called the fluid’s acceleration defined by
a® = u'V, u” (16)

The constraint equation also allows us to define a fluid’s local rest frame (LFR) which is
an orthonormal frame {e,}3_, such that ey = u.
We can now define the relativistic Euler equations given in the following definition.
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Definition 2.4. The relativistic Euler equations are given by

VT =0 (17a)
VoJ* =0 (17b)
Jopuu’ = —1 (17¢c)
p=plo.n). (17d)

Equation ([17a) corresponds to conservation of energy and momentum and energy ([L7h))
corresponds to conservation of Baryonic charge.

Remark. From physical considerations, we often require that o > 0, p > 0, and n > 0. In
fact, we will consider the case of zero pressure and density further in these notes.

We now discuss an alternative way to write the relativistic Euler equations.
Definition 2.5. Define the following two-tensor
o5 = gup + Ualp (18)
which corresponds to projection onto the space orthogonal to u.
It is easy to see from the constraint equation that for a vector u

Haﬁuﬁ = gaﬁuﬁ + Uq, uﬁuﬁ = Uy — Uy = 0.
~—~—

=0
Furthermore, if v is orthogonal to u, we have
Haﬁvﬁ = gagvﬁ + uau/gvﬁ = vg.

To derive a more standard looking set of equations given by equation [I7a] we decompose in
the directions parallel and orthogonal to w:

V. T} =V, [(p+ o)u'u, + pg!]
=u"V,(p+o)u, + (p+ o) Vyu'u, + (p + 0)u"V,u, + V0

If we multiply above by u”, we arrive at

u'V, T =u'"V,(p+ o) wu” +(p + o)V, u" uu” +(p + o)u! v’V u, +u”V,0
—1 =1 =0
=u,Vyo+ (p+0)V,u"

which yields the energy equation

u,Vo+ (p+o)Vuut =0 (19)
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Secondly, apply II"” to V,T}:

IV, T4 = u'(p + 0) I, +(p + o)V, 1wy, +(p + o)D" u#V yu,, + 117"V, p
=0 =0

= (p+ o)u” {nguuy +u? uVVuuy} + 11"V, p
=V, ut =0

= (p+ o)u'V,u” + 11"V ,p

which yields the momentum equation

(p+ QuV,u + TV ,p = 0 (20)

Therefore, we can write the relativistic Euler equations as

w0+ (p+0)V,u' =0 (21)
(p+ 0"V, u” +1I""V,p =0 (22)
u'Vn+nV,ut =0 (23)
g/u/u'uuy =1 (24)
p = plo.n). (25)
2.4 Thermodynamics
We introduce the following quantities:
Definition 2.6. 1. The internal energy, E given by
o=n(l+E). (26)
2. The enthalpy, h given by
h=Pre 5o (27)
n

3. The specific entropy, called s, and temperature , called . These quantities are
related by the following first law of thermodynamics.

Proposition 2.7. (The First Law of Thermodynamics)
dp = ndh — nfds, (28)
where d is the exterior derivative in spacetime.

Using the above relation, we can derive an equation of motion for the specific entropy, s.
If we assume the physically natural stipulations that & > 0 and n > 0, we find that

utV,s = 0. (29)

Physically, this relation yields that the fluid is locally adiabatic, meaning that the entropy
is constant along the fluid’s flow lines.
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3 Free Boundary Relativistic Euler

We now consider the relativistic Euler equations in a fixed background. For simplicity,
we consider the background of the Minkowski metric. We begin with a discussion about
free-boundary problems.

3.1 Free Boundary Problem

Relativistic fluids are often modeled as a free-boundary. A free boundary problem means
that the boundary evolves with the problem. Think of a wave moving in the ocean; as the
time parameter in the problem increases, the boundary of the domain changes. This is an
example of a free boundary.

We are going to consider whose domain is not fixed, but rather moves with the motion of
the fluid. We call this type of fluid as a free-boundary fluid. In the context of relativistic
fluids, this could model a relativistic star in a vacuum.

At a time t, let ; be the region occupied by the fluid. We can then define the space
occupied by the fluid at all times 0 < ¢ < T for some T" > 0 as

Q= Qx{t} (30)

0<t<T

We call this as the moving domain. We are interested in the boundary of the fluid that
we call the free-boundary. It is defined as

D= [J Lo {t} (31)

0<t<T

We are interested in the free-boundary relativistic Euler equations in the domain
Q. Outside of the fluid, we assume that there is a vacuum. This is why we use a relativistic
star as our main example.

3.2 Boundary Conditions

The variables of interest in this problem are the fluid velocity, density, and pressure. Natu-
rally, we need to prescribe boundary conditions for each of the above variables. The following
conditions come largely as physical requirements rather than mathematical. We impose the
following conditions on the pressure and velocity at the boundary:

plr =0 (32)

and
ueldl (33)

where TT is the tangent bundle of I'. The first condition can be intuitively understood given
that outside of the fluid is a vacuum. The velocity condition says that I'; is advected by the
fluid. That is, I'; moves at a speed of the normal component of the fluid at the boundary.
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Moreover, we assume that the fluid is barotropic. This means that the fluid’s pressure
is a function only of its density. That is

p=plo). (34)
Understanding this assumption, we have two cases for the density at the free-boundary:
e o|r > 0, which is the case of a liquid.
e o|r =0, which is the case of a gas.

We will restrict ourselves to the second case, that of a gas. Note that these two cases
present very different mathematical problems. In our case of a gas, we see that the equations
degenerate at the boundary. That comes from the quantity (p+ o) vanishing at the boundary
given the above conditions. In the case of a gas, we call the free boundary as the vacuum
boundary. We also have another description of the domain 2 as

Q={(r,z) | T =t,0(t,x) > 0}. (35)

Finally, given that the outside of the fluid is a vacuum, sound waves cannot exist. Hence,
we impose that
Alr = 0. (36)

It turns out that the decay rate of the speed of sound squared near the boundary plays
an important role in this problem. We will show that there is only one physical decay rate
for the speed of sound squared near the boundary: one that is linear. That is

c(t,x) ~ dist(z, T), (37)

for x € {; near I';.

3.3 Diagonalized Equations

To end this section on the free-boundary relativistic Euler equations, we make some substitu-
tions which will help in analysis in the future. Specifically, we want to diagonalize equations
about the material derivative. We now seek to choose good dynamical variables that are
tailored to the characteristics of the Euler flow all the way to the moving boundary. Here,
the sound characteristics will vanish due to the vacuum boundary condition. Our choice of
good variables will

1. better diagonalize the system with respect to the material derivative,

2. be associated with truly relativistic properties of the vorticity, and

3. leads to good weights that are all for the control of the behavior of the fluid variables
when one approaches the boundary.
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Property 1 is important because it is tied with both the wave and transport character
of the flow in that (a) the diagonalized equations lead to good second order equations that
capture the propagation of the flow and (b) it will allow for a good transport structure that
will allow us to implement a time discretization for the construction of regular solutions.
Property 2 ensures a good coupling between the wave-part and the transport-part of the
system. Finally, property 3 will lead to the correct functional framework needed to close the
estimates.

We will denote the good variables by (r,v). First, we want v to be a rescaled version of
the velocity written as

v = flou” (38)

7o) = exp ( / zﬁi@d@) | (39)

First, we consider a general barotropic equation of state. Computing the derivative of v*
yields

where f is given by

ov” = f/(Q>auQUV + f(Q)guuV'
We can implicitly substitute into equation and find

+ (0% [ ' [e%
b 7 Qu“auv + R*m™ 3,0 + (—f7(p +0) + h2) u*utd,0 = 0.
Now our choice for f comes to light. Using equation (39)), we see that the coefficients on the
last term above vanish. This satisfies the above requirements because the resulting equation
is diagonal with respect to the material derivative and given by

02f2
(p+ 0)°

We can use the velocity constraint condition to solve for v°, which gives

v’ = /2 + |v]?, [v|? == v';. (41)

Note that in solving for v°, in order for v° to be a future-pointing vector field, we choose the
positive square root. This gives a diagonal equations because we can eliminate all the time
derivatives given we can explicitly solve for v° given the already calculated quantities.

Next, we would like to diagonalize equation using the new variable v. First, we solve
for gv* by setting o = 0 in equation to obtain

D" + m“*0,0 = 0. (40)

h2f2 vt
&wo = m&gg - Faﬂ}o
h2f2 ff/ - Ui’Uj

b+ 00 ()

where we use equation to compute 9;0°. We can now solve for d,v* using the above

relation to find
2k i
(9#7)“ = (p T Q)antg - (UO)ZU az@ - ((SJ — W) 81'1}]‘

9
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where § is the Euclidean metric. We now express d,u* in terms of d,0*. After some algebra,
we can write equation (?77) as

p+o (.. v , 2f%
D 5” - 01 i — h ’01- - 0, 42
o+l (9% = G ) s e #2)
where
. 2 |U|2
apg=1—nh (0] (43)

We have equations and that are valid for a general barotropic equation of state.
Moving forward, we will make a specific choice of equation of state. We will assume that the
equation of state is a polytropic gas. This is given by

(o) = o (44)

where x > 1. Making this choice will allow us to define the second good variable. We can
calculate the speed of sound squared to be h? = (k + 1)¢" and the function f becomes
flo) =1+ QR)IJF%. It is the case that it is better to adopt the sound speed squared as a
primary variable instead of ¢ as it plays the role of the correct weight in the forthcoming
energy functionals. We define the second component of the good variables by

1+k
ok

Making the substitutions into equations and yields the following good variable
formulation of the relativistic Euler system.

T

0" (45)

Dr + TGijain + rav'or =0 (46a)
Dtvi + &Qaﬂ' =0 (46b)

where we have defined

. KT . Vi KT
Gi=" (i) i=1
o (=) T

and the coefficients ag, a;, and as are given by

242 =142

|v|? 2KT T
= — Ay =

a) =
()2 T ()]

0

Equations are the desired form of the system as they are diagonalizable with respect
to the material derivative. These equations will be the main concern of the forthcoming
analysis. We will consider only the spatial components v* as variables and v° given by

00 = \/F2HE 4 ]2, (47)

The specific form of the coefficients a; for ¢ € {0,1,2} is not crucial to the arguments. The
takeaway from these constants is that they are smooth functions of r and v and ag, as > 0.

10
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The operator G0;(-); can be viewed as a divergence-type operator. This divergence
structure is related to the fact that equations (46]) express the wave-like behavior of r and
the divergence part of v. The symmetric and positive definite matrix ¢?H% is closely related
to the inverse of the acoustical metric. This is manifested in their agreement at the leading
order near the boundary.

Another consequence of equations is that they have the correct balance of powers
of r to allow estimates all the way to the free boundary. The r factor in the divergence of
v is related to the propagation of sound in the fluid, whereas the r factor in the last term
of equation will allow us to treat it as a perturbation term in the forthcoming elliptic
estimates.

4 The Linearized Equation

We end this introduction to relativistic fluids with a section on the linearized equations of
equations [46] In short, we want to show that these equations are well-posed.

Definition 4.1. For a system of PDEs, we say that the system is well-posed if the following
three conditions hold:

1. For a given T' > 0, there exists a solution to the system.
2. For the above solution, it is unique.

3. The solution behaves nicely if the initial conditions are altered.

Before we can prove that the linearized system is well posed, we must define the spaces
in which we work. Traditionally, solutions to PDEs live in Sobolev spaces. Think of these
as spaces that mimic the Lebesgue spaces LP, but they give information about ’derivatives’
of the elements. We need to consider a slightly modified type of Sobolev space. The reason
has to do with the behavior of this problem near the boundary. It is clear that the equations
of motion degenerate at the boundary. This has to do with the vacuum boundary condition
discussed above.

4.1 Weighted Sobolev spaces

Definition 4.2. Define the space L?*(€;)[r] as the L? weighted spaces over §; whose norm
is given by

I s = [ rl-Fda (48)
We now define the weighted Sobolev spaces.
Definition 4.3. For an integer j > 0 and ¢ > —1/2, define the space H’?(£2;) to be the

space of distributions in €2; whose norm given by
| - ”?{jya(m) = Z |70 - H%Q(Qt) (49)
laf<j

is finite. Note that using interpolation, we can extend this definition to all real s > 0, and

hence define H*7();).

11
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We now present some important properties about weighted Sobolev spaces that will be useful
later.

Lemma 4.4. Weighted Embedding. For integers N,k > 0, and o > 0, we have
HN-HC,U-HC C HN,O'. (50)

Lemma 4.5. Embedding relative to weights. For integers N,7 > 0, and o > 0, we
have
HN,O‘ C HN,<7+T. (51>

Lemma 4.6. Embedding into C* spaces For integers N,k > 0 and o > 0, we have
HNo c CF (52)

for0<k<N-—0—1

2

In the coming estimate, we are going to need to take time derivatives of integrals over the
free boundary. This procedure requires some delicate handling. We present the following
result on how to do this.

Theorem 4.7. (Reynolds Transport Theorem) For a time-dependent domain €, we
have the following differentiation formula

d u’
p . fdxr = . thdx+/ﬂt 10 <E> dx. (53)

We now present the linearized relativistic Euler system. When working with PDEs, it
is common to consider the linearized case before moving to the nonlinear case. In fact, we
can use the results of the linearized system as a tool to aid in the nonlinear analysis. We
introduce the variable s to be the variable associated to the linearization of r and w to

be the variable associated with the linearization of v. A computation gives the following
linearization of as

Dys + —HY0yrw; + rHY Q;wj + rav'0;s = f (54a)
K
thi + CLQ@Z'S = hz (54b)

where f and h are of the form

f=Vis+rWw (55a)
h=Vis+ Wyw (55b)
such that Sy, So, Wi, Wy are linear in 0(r,v) with coefficients that are smooth functions of
(r,v). The functions f and h are treated as the error terms. These will be controlled in a

later section. An important consequence of the linearized system is that it does not obtain
nor require any boundary conditions on the free boundary I';. This is the case because the

12
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one-parameter family of solutions is not required to have the same domain, as it would be if
one were working in Lagrangian coordinates.

Finally, we provide explicit expressions for the potentials V; , and W; o. However, these
do not play a significant role in the rest of this work. We have

Vg2 ij OH"Y
Vi = (UO)3T Najr — H]@-vj — 7"701-1@, (563)
OHY ,
W2l = _—8 ] alvj — TagH’Llair, (56b)
v
vl 142 Oas
‘/2,1' = — (UO)3T ”ajUj + E@-r, (56C)
(WQ)Z = —ﬁH] 8jvj + W&r, (56d)
where a3 is a smooth function of (r,v) given by
a 1 11 P
P =77 (2 + (v0)3 )~ (57)

4.2 The Linearized Energy Estimate

To derive an energy estimate for the linearized equation, we need to define the appropriate
energy functional. Consider the following definition.

Definition 4.8. For the purpose of the forthcoming analysis, view the time-dependent space
as a Hilbert space whose squared norm is now defined. Define the energy functional for the
linearized equations as

Eyn(s,w) = [|(s,w)]” :/ P (52 4 oy ' r Hww; ) de. (58)
Dy

We will use this space for the linearized equations and its adjoint. We now present the
main result for the linearized equations.

Proposition 4.9. Let (r,v) be a solution to system (54). Assume that both r and v are
Lipschitz continuous and that r vanishes simply on the free boundary. Then, the following
estimate holds for solutions (s,w) to equations :

1] < Bll(s, w)|*. (59)

d
s

Proof. We first consider the case of Kk = 1. Multiply equation (54a) by s and contract
equation (54b) by ay'r Hw;. We have that

1 . . .
§Dt(s2) + sH" Oyrw; + rsHY O;w; + sra;v'0;s = sf

iager”Dt(wiwj) +rH9w;0;5 = ay'rH7w;h;

13
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and summing the two equations yields
1 1 - - . ) -
éDt(s2) + §a2_1rH” Dy(w;w;) + sHY 0yrw; + rsH" 0;w; + sraqv'0;s + rHw;0;s

= Sf —f— a;erijwjhi.
To derive the energy estimate for this case, we integrate over D, and we arrive at

1 g
— [ Dy(s*) + ay'rH" Dy(wyw;)dz + /

sHij&»ijdx+/ rsHijﬁiwjd:p
2 Dt Dt

o (60)
—l—/ smlvi@sdx—i—/ rHijwjaisda::/ sf +ay'rH7w;h;dx.
Dt Dt

Dy

We first use the Reynolds transport theorem on the first integral on the left hand side

of to find
1 1d 1 v
5 /Dt i (s7)dx 2t ), s*dx 5 /Dt s°0; (—U(]) dx (61)

We can easily bound the second integral above by part of the energy as
/ $20; (U—(]) dx 0; (U—O) / s?dx.
Dy v v Loo(Dy) Dy

1 g 1 g 1 iy
—/ a;er”Dt(wiwj)dm = —/ D, (a;er”wiwj) dx — —/ D, (a;er”) ww;dx
2 Jp, 2 Jp, 2 Jp,

S ‘

Similarly,

)

1d _ iq 1 — i v
=5q . a;'rH Jwwde — 3 /Dt a;'rH Tww;0; (ﬁ) dz (62)
1

— —/ D, (a;erij) w;w;dx
2 Dy

As before, we can easily bound the sound integral above as part of the energy as

s, () as] < o, (&
/DtGQT wW;W; 0 ) 0

Combining this bound with the previous estimate yields the following energy bound

/ (32 + a;erijwiwj) 0; (U—O) dx
Dy v

Next, we consider the third integral above and split it up into

< ‘

/ ay ' H wiw;dzx
Lo J Dy

S s, w)l?

1 g 1 iy 1 -
—/ D, (a;er”) wyw;jdr = —/ rD, (a;lH”) ww;dr + — Dt(r)aglfrH”wiwjd:c.
2 Jp, 2 Jp, 2 Jp,
(63)

14
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As before, the first integral can be controlled by the energy as

1 .

—/ rDy (a3 HY) wiw;dz < [|(s, w) |

2 Jp,

The second integral seems to be missing the correct power of r in order to be controlled
by the energy. Indeed, the vacuum boundary condition provides r(t,z) ~ dist(z,; ), which
yields Or = O(1) so that

/ Or|w|*dz ~ lw*de £ [ r|w|*dz.
Dt Dt Dt

However, we note that the derivative that falls upon r is not a simple spatial derivative; it
is a material derivative. This fact is crucial. Using equation (46a]), we have

Dyr = 1rd(r,v) (64)

and hence we require the correct weight for the energy estimates. Using this miracle, we can
control the second integral as
Next, we consider the fourth integral on the left-hand side of equation . We find that

. 1 .
/ sra;0'0;sdx| = ‘—/ a1rv'o; (32) dx
Dt 2 Dt

< ‘@ (alrsvi) | s2dx
Dy

< / s*dw
Dy

< Nl (s, w)l.

The final three terms on the left-hand side of equation can be written in divergence
form. Using integration by parts, we can bound the divergence form by the energy in the
following way

/sHijGirwjdqu/ TsHijaiwjdx+/ rH"w,;0;sdx
Dy Dy Dy

§/ |H0;(rsw;)| dz
Dy

Oi(H")(rsw;)dx
Dy
< (s w)l?

Finally, we turn to the right-hand side of equation . The Cauchy-Schwartz inequality
gives

/ sf + agtrHw;hidz < ||(F, )|l (s, w)])
Dy

It remains to show that (f, g) are perturbative terms. We note the following bound on the
potentials given by equations

Vil + [[Wiglleny S B. (65)
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Using this bound, it follows that
(.ol = [ (7 + axrtgig))ds
Dy

- / (Vis +rWiw;)? + angijgigj)dx
Dy
< B(s,w)|?

Combining the bounds shown above, we obtain

S Blits,w)[I? + lI(s, w) (£ 9)]l < Bll(s,w)]”

We now outline the result for a general x. The only significant difference is that which we
multiply or contract the equations by to yield the correct divergence form. Multiply equation
1—k 1 ..
by r+ s and contract equation with ay '+ HY9w; to find that
1 1—k 1

—rr Dis® 4+ —r = H70mwjs +r= H9pwjs + ~rxa;v'9;s*> = fr'= s,
2 K 2
1

§a2 rnGth(wZ,wj) + Tnijjﬁs =ay rnHngw]

The next step is to add the above two equations together. In doing so, we can simplify by
writing three of the terms in divergence form. That is

1 177’{ P l . l . l .. l P l ..
—r = HYO0;rw;s +r=H"0;w;s +r= Hw;0;5 = 0; <7w> H"%wjs 4+ r=HY0;w;s +r= Hw;0;s
K

= HYp, (r%sz) .

Using this observation, adding the two equations yields

1 1w 1 . 1 , g k g

§TITDt32 + éaglr%H”Dt(wiwj) + 57“%&11)181‘82 + H"0; (r%sz> = frlTs + a;lréH”giwj.
From here, the rest of the estimates are almost identical to the case of K = 1. This concludes
the proof of the energy estimate of the linearized equations. m

We now show local well-posedness of the linearized system.

Proposition 4.10. Let (r,v) be a solution to system ([46) and assume that r and v are
Lipschitz continuous and that r vanishes simply on the free boundary. Then, the linearized

equations are well-posed in .

Proof. We first compute the adjoint equation to (54 with respect to the duality relation
defined by the inner product determined by norm (58). The terms f and g on the right-
hand side of equation are linear expressions in s and rw and in s and w, respectively,
with O(r,v) coefficients. Thus, the source terms in the adjoint equation have the same
structure as the original equation. We can write the left hand side of equation as

pa) o) o (o)
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where ) . -
; ayrvt rHY
Al — [T
I ale O3><3:|
and _ A
B— O1x1 ZHY
103x1 Osxs

With respect to the inner product, the adjoint term corresponding to A%0; is

Ao — ayrv’ THY| O1x1 LHYdpr
' ay  Osxs Lrtasdr  Osxs

modulo terms that are nonlinear expressions in § and r@w and in § and @ (with 9(r,v)
coefficients) in the first and second components, respectively, where § and @ are elements of
the dual. Similarly, the adjoint term corresponding to B is

B _ |: 01><1 01><3:|

%T_lagaﬂ’ 03><3.

Combining these expressions, we see that the bad term on the lower left corner of the second
matrix in A%9; cancels with the corresponding terms in B. Therefore, the adjoint problem is
the same as the original one, modulo perturbative terms, and it therefore admits an energy
estimate similar to the energy estimate for the linearized equations.

The forward energy estimate for the linearized equation and the backward in time en-
ergy estimate for the adjoint linearized equations yield uniqueness, respectively, existence of
solutions for the linearized equation, as needed. This guarantees the well-posedness of the
linearized system. [l
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