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1 Review of Point Set Topology

Before we dive into differential geometry, we will review some important aspects of point set
topology. We begin with the definition of a topology.

Definition 1.1. A topology for a set X is a collection T of subsets of X such that:

1. The intersection of any two members of T is also in T .

2. The union of any number of members of T is also in T .

3. X ∈ T

4. ∅ ∈ T

We call the pair (X, T ) a topological space and the elements of X are called points. The
members of T are called open subsets of X.

Example 1.2. We provide two trivial examples of a topology on a set X.

1. The discrete topology: T = {All subsets of X}.
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2. The indiscrete topology: T = {∅, X}.

Definition 1.3. A basis for a topology for X is a collection B = {Bi}i∈I of subsets of X
such that

1.
⋃
iBi = X,

2. if x ∈ Bi ∩Bj, then there exists a k ∈ I such that x ∈ Bk ⊂ Bi ∩Bj.

Definition 1.4. A subbasis for a topology T for a set X is a collection A = {Ai}i∈I of
subsets of X such that the family of finite intersections of members of A is a basis for T .

Definition 1.5. A neighborhood of x ∈ X is an open set of X containing x. A subset of
X is open if and only if it is a neighborhood of each of its points. A subset is closed if its
complement is open.

We now introduce some important definitions of properties of a space X.

Definition 1.6. Let X be a space.

1. We say that X is a T0-space if, for each pair of distinct points x, y ∈ X, there is a
neighborhood Ux of X such that y /∈ Ux or there is a neighborhood Uy of y such that
x /∈ Uy.

2. We say that X is a T1-space if, for each pair of distinct points x, y ∈ X, there exist
neighborhoods Ux and Uy of x and y, respectively, such that x /∈ Uy and y /∈ Ux.

3. We say that X is a T2-space if, for each pair of distinct points x, y ∈ X, there exist
disjoint neighborhoods Ux of x and Uy of y. A T2-space is also called a Hausdorff
space.

4. We say that X is a T3-space if, given any closed set D ⊂ X and a point x ∈ X −D,
there exist open sets U and V such that U ∩ V , D ⊂ U , and x ∈ V . We say X is
regular if it is T1 and T3.

5. A space X is T4 if, for each pair of disjoint closed sets A and B, there are disjoint open
sets U and V such that A ⊂ U and B ⊂ V . We say that X is normal if it is T1 and
T4.

2 Introduction to Differential Manifolds

Definition 2.1. A topological manifold of dimension n is a set M such that

1. M is a Hausdorff space

2. at each point in M , there is a neighborhood U with is homeomorphic to an open set
in Rn.
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Definition 2.2. If the charts (U,φ) and (V, ψ) are such that U ∩V = ∅, the composite map

ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V )

is called the transition map from φ to ψ, We say that two charts (U,φ) and (V, ψ) are C∞

comparable if their compositions φ ◦ ϕ−1 and ϕ ◦ φ−1 are also C∞.

Definition 2.3. A differentiable structure on a topological manifold M is given by a
family U = {(Uα, φα)}α∈I of coordinate neighborhoods such that

1.
⋃
α Uα =M

2. for all α, β ∈ I, the charts (Uα, φα) and (Uβ, φβ) are C
∞ comparable

3. Any chart (V, ψ) comparable with (Uα, φα) is itself in U .

A C∞ manifold is a topological manifold together with a C∞ differentiable structure on the
manifold. If (M,U) satisfies properties 1 and 2, we call this an atlas on M . If (M,U)
satisfies properties 1, 2, and 3, we call this a maximal atlas on M .

Remark. Two atlases are comparable if their union forms an atlas.

Proposition 2.4. Let M be a topological manifold. Then, the following hold:

1. Every smooth atlas (M,U) is contained in a unique maximal smooth atlas.

2. Two atlases determine the same smooth if and only if their union is a smooth atlas.

2.1 Examples

We now provide a set of examples of smooth manifolds.

1. The Cartesian plane Rn is a smooth manifold with atlas U = {(Rn, id)}.

2. The n-sphere defined by

Sn = {(x1, ..., xn+1) ∈ Rn+1 | x21 + ...+ x2n+1 = 1} (1)

is a smooth manifold. We provide two examples of atlases. The first atlas has two
charts given by stereographic projection. Define the north and south poles as

N = (1, 0, ..., 0) S = (−1, 0, ..., 0)

and the stereographic projection given by

ΠN : Snn{N} → Rn

(x1, ..., xn+10 7→
(

x2
1− x1

, ...,
xn

1− x1

)
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3. Hyperboloid: The hyperboloid is defined as

Hn = {(x1, ..., xn+1) ∈ Rn+1 | x21 −
(
x22 + ..+ x2n+1

)
= 1}. (2)

The smooth structure is given by two charts. The first is given by

H+ = {(x1, .., xn+1) ∈ Hn | x1 > 0}

with the projection given by
Π+ : H+ →

Proposition 2.5. We have the following proposition pertaining to products of manifolds.

1. Let Mn be an n-manifold and U ⊂M be an open subset. Then, U is an n-manifold.

2. Let Mn1 , ...,Mnk be manifolds of degree n1, ..., nk, respectively. Then,

Mn1
1 × · · · ×Mnk

k

admits a canonical smooth structure of a n1 + ...+ nk manifold.

Definition 2.6.

2.2 Smooth Functions and Mappings

We now discuss functions between smooth manifolds and some of their properties. We first
define what it means for a function on smooth manifolds to be smooth.

Definition 2.7. Let Mm be a smooth manifold, k ∈ N, and f :M → Rk be a function. We
say that f is a smooth function if for every p ∈M , there exists a smooth chart (U,φ) on
M such that p ∈ U and the composite f ◦φ−1 is smooth on the open subset Ũ := φ(U) ⊂ Rn.

M

U

p

N

V

f(p)

f

φ(U)

φ

ψ(V )

ψ
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Remark. The most important special case is that of smooth-real values functions given by

f :M → R

and denote it by C∞(M).

Definition 2.8. Let f :M → Rk be a function and let (U,φ) be a chart for M . Define the
function f̃ : φ(U) → Rk by f̃(x) = f ◦ φ−1(x). We call f̃ the coordinate representation
of f .

Next, we generalize the idea of a smooth function to maps between smooth manifolds.

Definition 2.9. Let M and N be manifolds of dimension m and n, respectively.

Proposition 2.10. Every smooth map is continuous.

Proof. Let M and N be smooth manifolds and suppose that f : M → N is smooth. Given
some p ∈ M , the smoothness of f implies that there are smooth charts (U,φ) containing p
and (V, ψ) containing f(p) such that f(U) ⊂ V and the map ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is
smooth.

Definition 2.11. Let f : M → N be a function between manifolds M and N . We say
that f is smooth if f is smooth at each point p ∈ M . We call f a diffeomorphism if the
following are true:

1. f is smooth,

2. f is bijective,

3. f−1 is smooth.

Proposition 2.12. Let M,N,P be manifolds. Then the following maps are smooth.

1. c :M → N , the constant map is smooth

2. id :M → N , the identity is smooth

3. If U ⊂M is open, then the inclusion

i : U ↪→M

is smooth.

4. If f :M → N and g : N → P are smooth, then the composition

g ◦ f :M → P

is also smooth.

Remark. We remark that for a diffeomorphism, the smooth and bijective criterion are not
enough. Consider the function f : R → R given by f(x) = x3. It is clear that f is smooth
and bijective. However, its inverse is not smooth at 0. Hence, it does not follow that f is a
diffeomorphism from
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Proposition 2.13. We compound some important properties about diffeomorphisms.

1. Every composition of diffeomorphisms is a diffeomorphism.

2. Every finite product of diffeomorphisms between smooth manifolds diffeomorphism.

3. Every diffeomorphism is a homeomorphism and an open map.

Example 2.14. We now provide some basic examples of smooth maps.

1.

Definition 2.15. Let g : Rn → Rm be smooth and let x0 ∈ Rn, then we say that g is
submersion of x0 of its differential map

Dx0g : Rn → Rn

given by

Dx0g =

(
∂gi
∂xj

)
(x0)

is surjective.

Proposition 2.16. Let f :Mm → Nn be smooth. Then, f is a

1. submersion at m0 ∈Mm if and only if m ≥ n and the rank of Dφ(m0)f̃ equals n.

Theorem 2.17. (Inverse Function Theorem) Let U ⊆ Rn and f : U → Rn be smooth.
Assume that

Dx0f : Rn → Rn

for some x0 ∈ Rn. Then, there exists a neighborhood Ũ ⊆ U of x0 such that

f |Ũ : Ũ → Rn

is a diffeomorphism and

Df(x0)(f
−1) =

(
Dfx0

f
)−1

.

Definition 2.18. Let M,N be smooth manifolds and let f : M → N be smooth. Then, f
is a submersion

Definition 2.19. Let U = (Uα)α∈A be an open cover for a smooth manifoldM . A partition
of unity subordinate to U is a family of smooth function

{ψα :M → R}α∈M

such that

1. ψα(x) ⊂ [0, 1] and supp(ψα) ⊂ Uα,

2. the induced family of supposed {supp(ψα)} is locally finite and

3.
∑
α∈A

ψα(p) = 1 for each p ∈M .
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2.3 Bump Functions

We end this section with a few remarks on bump functions.

Definition 2.20. We call a function Ψ a bump function if it is smooth and compactly
supported. We create a bump function in the following way. Set

f =

{
e−1/t t > 0

0 t ≤ 0.

Next, set

g(t) =
f(t)

f(t) + f(1− t)

and we can finally set
Ψ(t) = g(t+ 2)g(2− t)

Let M be a smooth manifold with (U,φ) as a local chart of M . Let ψ : U → R be
smooth. Then, K ·φ, where K :M → R is a smooth bump function with supp(K) ⊂ U is in
C∞(M) in a neighborhood p ∈ V ⊆ U and K · φ

∣∣
U
= ψ. Hence, if M is a smooth manifold,

U is a chart in M , and f ∈ C∞(U), we can extend to a function f ∈ C∞(M) such that
f
∣∣
U
= f .

3 The Derivative of a Function and the Cotangent Space

3.1 The Derivative of a Function

We define the space C∞(M) as the set of all smooth functions from M to R. We now
motivate the idea of the derivative of a function on a manifold. LetM be a smooth manifold
and consider two charts (U,φ) and (V, ψ) such that there exists p ∈M such that p ∈ U ∩V .
Define f̃ = f ◦ φ−1 and f = f ◦ ψ−1. We have that

Dφ(p)f̃ =

(
∂f̃

∂x1
(φ(p)), ...,

∂f̃

∂xn
(φ(p))

)

For notational ease, set ψ ◦ φ−1 := y(x) and φ ◦ ψ−1 = x(y). For i ∈ {1, ..., n}, we have

∂f

∂yi
=
∑
j

∂f̃

∂xj

∣∣∣∣
φ(p)

∂xj
∂yi

∣∣∣∣
ψ(p)

It follows that

Dψ(p)f =

(
∂f

∂x1

∣∣∣∣
φ(p)

· · · ∂f

∂xn

∣∣∣∣
φ(p)

)
·


∂x1
∂y1

∣∣∣∣
ψ(p)

· · · ∂x1
∂yn

∣∣∣∣
ψ(p)

...
...

∂xn
∂y1

∣∣∣∣
ψ(p)

· · · ∂xn
∂yn

∣∣∣∣
ψ(p)


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and we arrive at

Dψ(p)f = Dφ(a)f̃ ·
(
∂xi
∂yj

) ∣∣∣∣
ψ(p)

This calculation demonstrates that Dpf̃ depends on the chart used. An image for the
above argument is presented below.

M

U

V

p

φ(U)

φ(p)

ψ(U)

ψ(p)

3.2 The Cotangent Space

We now define the cotangent space of a manifold. First, let the subspace Zp ⊂ C∞(M) be
given by

Zp := {f ∈ C∞ | Dφ(p) = 0}.

Note that Zp does not depend on the choice of charts.

Definition 3.1. Let M be a smooth manifold and p ∈M . We define the cotangent space
at p as

T ∗
pM := C∞(M)/Zp. (3)

Proposition 3.2. Let M be a smooth manifold of dimension n and p ∈ M . Then the
following hold:

1. The cotangent space T ∗
pM is an n−dimensional vector space

2. If (U,φ) is a coordinate chart with coordinates (x1, ..., xn), then the elements

(
d

dx

∣∣∣∣
p

, ...,
d

dxn

∣∣∣∣
p

)
form a basis for the cotangent space T ∗

pM .

3. If f ∈ C∞(M) and in the coordinate chart f ◦ φ−1 = f̃(x1, ..., xn), then Dpf =∑
I

∂f̃

∂xi
(φ(p))

d

dxi

∣∣∣∣
p

where Dpf is the image of f in the quotient space C∞(f)/Zp.

Proof. Let πi : Rn → R be the ith coordinate projection. Th

9



Differential Topology Morton

Definition 3.3. Let M be a smooth manifold and p ∈ M . Define the tangent space at
p given by TpM as the dual space of T ∗

pM . Note that this space does not depend on any
charts.

Definition 3.4. A tangent vector at p ∈ M is a linear map Xp : C
∞(M) → R satisfying

the Leibniz rule at p:
Xp(fg) = Xp(f)g(p) + f(p)Xp(g)

Lemma 3.5. Let M be a smooth manifold and Xp be a tangent vector at p. If Dpf = 0,
then Xp(f) = 0.

Proof. Let (U,φ) be a chart on M at p. The fundamental theorem of calculus provides

f̃(x)− f(a) =

∫ 1

0

d

dt

(
f̃(φ(p))− t(x− φ(p))

)
dt

=

∫ 1

0

∑
i

∂f̃

∂xi
(φ(p))− t(x− φ(p))) · (xi − φ(p))dt

=
∑
i

(xi − φ(p))︸ ︷︷ ︸
= gi

·
∫ 1

0

∂f̃

∂xi
(φ(p))− t(x− φ(p))) dt︸ ︷︷ ︸

= hi

Let Gi, Hi : M → R be the globalizations of gi and hi, respectfully. Consider a bump
function K and define

Gi = K · (gi ◦ φ)
Hi = K · (hi ◦ φ)

It follows that

f(x)

∣∣∣∣
U

= f(p) +
∑
i

Hi ·Gi

4 The Tangent Space

We now introduce some basic tools used to study differentiable manifolds. We will first
define the tangent space denoted by TpM , at a point p ∈ M , which we can consider as an
analog to the directional derivative of a C∞ function on a smooth manifold. We will also
see that for a smooth function F : M → N , there is an induced linear map between the
tangent spaces, F∗ : TpM → TF (p)N , at each point p ∈ M . Associated to a coordinated
system around a point p will be a basis of TpM . Assigning a vector Xp to each point p ∈M
constructs a vector field on M .
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4.1 Tangent Vectors

From elementary calculus, we can imagine what we mean for a tangent vector. How do we
extend this idea to a manifold? We first have to content with how we think of elements in
Rn. On one hand, we usually think of elements in Rn as points. On the other, they can also
be thought of as vectors.

We first consider a so-called geometric tangent vector in Euclidean space. Given a point
p ∈ Rn, define the geometric tangent space to Rn at p, denoted by Rn

p , as the set
{p} × Rn := {(p, v) | v ∈ Rn}. We will write vp instead of (p, v) as a matter of convenience.
Further, define a geometric tangent vector in Rn as an element of Rn

p .
A geometric tangent vector provides us with a means of taking the directional derivative

of functions. For any geometric tangent vector vp ∈ Rn
p , we have the map

Dv|p : C∞(Rn) → R

given by

Dv|pf = Dvf(a) =
d

dt
f(p+ tv)|t=0,

which takes the directional derivative in the direction of v at the point p. Note that this
operator is linear and satisfies the Leibniz rule.

With the above discussion in mind, we can make the following definition.

Definition 4.1. If p is a point in Rn, a map

W : C∞(Rn) → R

is called a derivation at p if W is linear over R and satisfies the Leibniz rule.

Lemma 4.2. Suppose that p ∈ Rn, W ∈ TpRn, f, g ∈ C∞(Rn).

1. If f is a constant function, then Wf = 0

2. If f(p) = g(p) = 0, then W (fg) = 0.

Proposition 4.3. Let p ∈ Rn.

1. For each geometric tangent vector vp ∈ Rn
p , the map Dv|p : C∞ → R defined above is a

derivation at p.

2. The map v 7→ Dv|p is an isomorphism from Rn
p to TpRn.

Proof. The fact that Dv|p is a derivation follows from the fact that the directional derivative
is linear and abides by the Leibniz rule. To show that the map v 7→ Dv|p is an isomorphism,
we first note that it is indeed linear.
Injectivity: To show injectivity, suppose that vp ∈ Rn

p has the property that Dv|p is the
zero derivation. We can write vp as vp = viei|p where ej is the standard basis vector, and
taking f to be the jth coordinate function xj : Rn → R, thought of as a smooth function on
Rn, we obtain

0 = Dv|p(xj) = vi
∂

∂xi
xi|x=p = vj

11
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and hence vp is the zero function.
Surjectivity: Let w ∈ TpRn be arbitrary. Define v = viei such that vi = w(xi). We want
to show that w = Dv|p. To show this, let f be any smooth real-values function on Rn. We
know that we can write f as

f(x) = f(p) +
∑

Corollary 4.4. For any p ∈ Rn, the n derivations{
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
defined by

∂

∂xi

∣∣∣∣
p

f =
∂f

∂xi
(p)

form a basis for TpRn, which therefore has dimension n.

4.2 The Tangent Space at a Point

Let M be a smooth manifold of dimension m. We already defined what a C∞ on an open
subset U of M means. This allows us to consider the object C∞(U) which is the collection
of all C∞ functions that map

Definition 4.5. For a smooth manifoldM and a point p ∈M , define the tangent space to
M at a point p, denoted by TpM , as the set of all mappings Xp : C

∞(p) → R that satisfies
the following two conditions:

1. For all α, β ∈ R and f, g ∈ C∞(p), one has

Xp(αf + βg) = αXp(f) + βXp(g) (linearity)

2. For all f, g ∈ C∞(p), one has

Xp(fg) = (Xpf)g(p) + f(p)(Xp(g)) (Leibniz rule)

with the vector space operations in TpM defined by

(Xp + Yp)f = Xpf + Ypf

(αXp)f = α(Xpf)

A tangent vector to M at p is any Xp ∈ TpM .

Lemma 4.6. Suppose that M is a smooth manifold, p ∈ M , v ∈ TpM , and f, g ∈ C∞(M).
Then we have the following:

1. If f is a constant, then vf = 0.

2. If f(p) = g(p) = 0, then v(fg) = 0.

12
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4.3 The Differential of a Smooth Map

If M and N are smooth manifolds and F :M → N is a smooth map, for each p ∈M , define
the map

DFp : TpM → TF (p)N

called a differential of F at p, as follows. Given v ∈ TpM , let DFp(v) be the derivation at
F (p) that acts on f ∈ C∞(N) by the rule

DFp(v)(f) = v(f ◦ F ).

Note that if f ∈ C∞(N), then f ◦ F ∈ C∞(M), so the quantity v(f ◦ F ) is something that
makes sense. We summarize the above discussion in the following theorem.

Theorem 4.7. Let F :M → N be a smooth map on manifolds M and N . Then, for p ∈M ,
the map F ∗ : C∞(F (p)) → C∞(p) given by F ∗(f) = f ◦F is a homeomorphism of algebra and
induces a dual vector homomorphism DF : TpM → TF (p)M defined by DF (Xp)f = Xp(F

∗f)

Remark. The homomorphism F∗ : TpM → TF (p)M is often called a differential of F . The
notation dF , DF , or F ′ are other common notations for the differential.

Corollary 4.8. If F : M → N is a diffeomorphism of M onto an open set U ⊂ N and
p ∈M , then DF : TpM → TF (p)M is an isomorphism onto.

We know that any open subset of a manifold is a manifold of the same dimension. If
(U,φ) is a coordinate chart on M , then the coordinate map induces a isomorphism Dφ :
TpM → Tφ(p)Rn of the tangent space at each point p ∈ U onto Tφ(p)M . Additionally, the
inverse map Dφ−1 maps Tφ(p)Rn isomorphically onto TpM . The images ei = Dφ−1 ∂

∂xi
for

i = 1, .., n, of the natural basis
{

∂
∂x1
, ..., ∂

∂xn

}
4.4 Tangent Bundle

Definition 4.9. Let M be a smooth manifold. We define the tangent bundle as the
following

TM =
⋃
p∈M

TpM. (4)

Let M be a smooth manifold with an atlas U . Consider a chart (U,φ). It follows that

TU =
⋃
p∈U TpM φ(U)× Rn

= {p, vp | p ∈ U, vp ∈ TpM}

φ̂

Theorem 4.10. Let M be a smooth manifold and consider the tangent bundle TM . Then,
the following are true.

1. TM is a manifold with a canonical smooth structure.

2. The map π : TM →M given by (p,X) 7→ p is a submersion.

3. If p ∈M , then π−1(p) = TpM .

13
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5 Vector Fields

5.1 Basic Definitions

Definition 5.1. Let M smooth manifold. A vector field is a smooth mapping X : M →
TM such that

π ◦X = idM .

We call X a section of the tangent bundle given by

Γ(TM) := {C∞(M) ∋ X :M → TM | π ◦X = idM}

We have the following diagram between the tangent bundle, the manifold, and X ∈ Γ(TM).

TM

M

X π

Definition 5.2. Let M be a smooth manifold and X, Y ∈ Γ(TM). We define the Lie
bracket of X and Y as

[X, Y ] = XY − Y X. (5)

Proposition 5.3. Let X, Y, Z be vector fields on a smooth manifold M . Then the following
hold:

1. [X, Y ] is a vector field on M , called the Lie bracket of X and Y .

2. [X, Y ] = −[Y,X]

3. [aX + bY, Z] = a[X, Y ] + b[Y, Z]

4. [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

5. [fX, gY ] = fg[X, Y ] + fX(g) · Y − gY (f) ·X.

Example 5.4. Let M = R. Consider the vector fields X = f(t)
d

dt
and Y = g(t)

d

dt
for some

smooth functions f and g. Let h ∈ C∞(R). Then,

X(Y (h)) =

5.2 Geometric Understanding of Vector Fields

Definition 5.5. LetM be a smooth manifold. A one-parameter group diffeomorphism
is a smooth map

γ :M × R →M

such that

1. γt :M →M is a diffeomorphism

14
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2. γ0 = idM

3. γs+t = γs ◦ γt for s, t ∈ R.

Remark. Let Diff(M) := {f : M → M | f is a diffeomorphism}. Then, the map (R,+) →
(Diff(M), ◦) given by t 7→ γt is a homeomorphism.

Let γ be a one-parameter group of diffeomorphism and f ∈ C∞(M). Define the map
L :M → R by

L(f)(p) :=
d

dt
(f ◦ γt(p)).

It follows that L is linear and satisfies the Leibnitz rule. Hence, L is a derivation on M and
there is a corresponding vector field X given by

Xp(f) =
d

dt
f(γt(p))

∣∣∣∣
t=0

.

In local coordinates, for a chart (u, φ) with p ∈ U , we have

Xp(f) =
d

dt
(f̃(γ̃t(p)))

∣∣∣∣
t=0

=
∂f̃

∂xi
(φ(p)) · d(γ̃t(p))i

dt

∣∣∣∣
t=0

= ci(p) ·
∂

∂xi

∣∣∣∣
φ(p)

f̃

Definition 5.6. Let X be a vector field on a smooth manifold M . We define an integral
curve of X as a smooth map

α : (a, b) →M

such that (Dtα)

(
d

dt

)
= Xα(t).

Example 5.7. Let M = R2 and consider (x, y) coordinates with the vector field X =
∂

∂x
.

Then, on an integral curve α(t) = (x(t), y(t)), we have that

(Dtα)

(
d

dt

)
=
dx

dt

∂

∂x
+
dy

dt

∂

∂y
.

Matching the corresponding components of the vector fieldX, we have that following system:
dx

dt
= 1

dy

dt
= 0

which yields the integral curve α(t) = (t+ a, b) where (a, b) represent the initial condition of
the integral curve.

15
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Theorem 5.8. Let X be a vector field on a smooth manifold M . For all p ∈M , there exists
a neighborhood p ∈ U ⊂M , ϵ > 0, and a unique smooth function γ : U × (−ϵ, ϵ) →M such
that

dγ

dt
(p, t) = X(γ(p, t))

γ(p, 0) = p.

Theorem 5.9. If M is a smooth compact manifold, then there exists an ϵ > 0 such that the
flow is globally defined.

6 Vector Bundles

6.1 Basic Theory

Definition 6.1. Let M be a topological space. A real vector bundle of rank k over M
is a topological space E together with a surjective continuous map π : E → M satisfying
the following conditions:

1. For each point p ∈M , the fiber Ep = π−1(p) over p is endowed with the structure of a
k-dimensional real vector space.

2. For each point p ∈M , there exists a neighborhood U of p inM and a homeomorphism
Φ : π−1(U) → U × Rk (called a local trivialization of E over U), satisfying the
following conditions:

• π|U ◦ Φ = π

• for each point q ∈ U , the restriction of Φ to Eq is a vector space isomorphism
from Eq to {q} × Rk ∼= Rk.

If M and E are smooth manifolds, π is a smooth map, and the local trivializations can be
chosen to be diffeomorphisms, them E is called a smooth vector bundle. In this case, we
call any local trivialization that is a diffeomrophism onto its smooth image a smooth local
trivialization.

On the intersection U ∩ V , the map ψU ◦ ψ−1
V : (U ∩ V )× Rn → (U ∩ V )× Rn is of the

form (ψU ◦ψ−1
V )(x, v) = (x, gUV (x)(v)) where gUV is a smooth map from U ∩V to GL(m,R).

6.2 Examples

1. For a smooth manifold M , the tangent bundle TM is a vector bundle.

2. The tangent space of S1 and S1 × R are isomorphic vector bundles.

3. The Mobius band:

16



Differential Topology Morton

7 The Cotangent Bundle

7.1 Covectors

We begin with an introduction to covectors.

Definition 7.1. Let V be a finite dimensional vector space. Define the covector on V
to be a real-valued linear functional on V ; that is, a linear map ω : V → R. The space of
all covectors on V is itself is a vector space under the operations of pointwise addition and
scalar multiplication. It is denoted by V ∗ and called the dual space of V.

We state an important fact about the dual vector space in the finite dimensional case.

Proposition 7.2. Let V be a finite dimensional vector space. Given any basis (E1, ..., En)
for V , let ε1, ..., εn ∈ V ∗ be the covectors defined by

εi(Ej) = δij,

where δjj is the Kronecker delta. Then, ε1, ..., εn is a basis for the dual space V 8. Moreover,
we have that the dimensions of V and its dual are equal.

Definition 7.3. Suppose that V andW are vector spaces and the map A : V → W is linear.
Define the linear map A∗ : W ∗ → V ∗ as the dual map by

(A∗ω)(v) = ω(A(v))

for ω ∈ W ∗ and v ∈ V .

Proposition 7.4. The dual map satisfies the following properties:

1. (A ◦B)∗ = B∗ ◦ A∗.

2. (IdV )
∗ : V ∗ → V ∗ is the identity map of V ∗.

We also have the notion of the second dual space of V , denoted by V ∗∗ = (V ∗)∗. For
each vector space V , there is a natural, basis-independent map ξ : V → V ∗∗, defined as
follows. For each vector v ∈ V , define a linear functional ξ(v) : V ∗ → R by

ξ(v)(ω) = ω(v)

for ω ∈ V ∗. We have the following property about finite dimensional dual vector spaces.

Proposition 7.5. For any finite-dimensional vector space V , the map ξ : V → V ∗∗ is an
isomorphism.

7.2 Tangent Covectors on Manifolds

Definition 7.6. LetM be a smooth manifold. For each point p ∈M , define the cotangent
space at p, denoted by T ∗

pM , to be the dual space of TpM :

T ∗
p (M) = (TpM)∗.

Elements of T ∗
pM are called tangent coverctors at p or just covectors at p.

17
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8 Tensors

We now generalize the idea of linear maps to multilinear ones– that is, those that take several
vectors as inputs and depend linearly on each one separately.

8.1 Multilinear Algebra

In their simplest form, tensors are just real-valued multilinear functions of one or more
variables.

Definition 8.1. Suppose that V1, ..., Vk andW are vector spaces. A map F : V1×·· ·×Vk →
W is called multilinear if it is linear as a function of each variable separately when the
other are held fixed: for each i,

F (v1, ..., avi + a′v′i, ..., vk) = aF (v1, ..., vi, ..., vk) + a′F (v1, ..., v
′
i, ...vk).

Let L(V1, ..., Vk;W ) for the set of all multilinear maps from V1×· · ·×Vk to W . It is a vector
space under the usual operators of pointwise addition and scalar multiplication:

(F + F ′)(v1, ..., vk) = F (v1, ..., vk) + F ′(v1, ..., vk)

(aF )(v1, ..., vk) = a(F (v1, ..., vk))

Example 8.2. (Tensor Products of Covectors). Suppose that V is a vector space and
ω, η ∈ V ∗. Define the function

ω ⊗ η : V × V → R

given by
ω ⊗ η(v1, v2) = ω(v1)η(v2),

where the product on the right is ordinary multiplication of real numbers.

The above example can be generalized to arbitrary real-valued multilinear functions as
follows: let V1, ..., Vk,W1, ...,Wl be real vector spaces, and suppose that F ∈ L(V1, ..., Vk;R)
and G ∈ L(W1, ...,Wl;R). Define a function

F ⊗G : V1 × · · · × Vk ×W1 × · · · ×Wl → R

given by
F ⊗G(v1, ..., vk, w1, ..., wl) = F (v1, ..., vk)G(w1, ..., wl).

It follows from the multilinearity of F and G that F ⊗G(v1, .., vk, w1, ..., wl) depends linearly
on each argument.

Proposition 8.3. (A Basis for the Space of Multilinear Functions) Let V1, ..., Vk be
real vector spaces of dimensions n1, ..., nk, respectively. For each j ∈ {1, ..., k}, let (ej1, ..., ejnj

)

be a basis for Vj and let (ϵ1j , ..., ϵ
nj

j ) be the corresponding dual basis for V ∗
j . Then, the set

B = {ϵi11 ⊗ · · · ⊗ ϵikk | 1 ≤ i1 ≤ n1, ..., 1 ≤ ik ≤ nk}

is a basis for L(V1, ..., Vk;R), which therefore has dimension equal to n1 · · · nk.
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8.2 Abstract Tensor Products of Vector Spaces

The result of the previous section shows that the vector space of multilinear functions
L(V1, ..., Vk;R) can be viewed as the set of all linear combinations of objects of the form
where ω1 ⊗ · · · ⊗ ωk where ω1, ..., ωk are covectors.

We need to make sense of formal linear combinations. Let S be a set. We can think

of formal linear combinations of S as an expression of the form
m∑
i=1

aixi where ai are real

numbers and xi are elements of S. We make the following definition:

Definition 8.4. For any set S, a formal linear combination of elements of S is a
function f : S → R such that f(s) = 0 for all but finitely many s ∈ S. The free real
variable vector space on S, denoted by F (S), is the set of all formal linear combinations
of elements of S. Under p

Proposition 8.5. The Characteristic Property of the Free Vector Space For any
set S and any vector space W , every map A : S → W has a unique extension to a linear
map Ã : F (S) → W .

Proposition 8.6. (The Characteristic Property of the Tensor Product Space)
Let U, V,W be finite dimensional vector spaces and let H : V ×W → U be a bilinear map.
Consider the map φ : V ×W → V ⊗W given by

φ(v, w) = v ⊗ w.

Then, there exists a unique function h = such that the following diagram commutes:

V ⊗W

V × U U

φ

H

Proposition 8.7. (Basic Properties of Tensor Products) Let U, V,W be a finite
dimensional vector spaces. Then the following hold:

1. V ⊗W ∼= W ⊗ V

2. V ⊗ (W ⊗ U) ∼= (V ⊗W )⊗ U

3. Let L : V ∗ × W → Hom(V,W ) where (f, w) 7→ f(v) · w. Then the induced map
ℓ : V ∗ ⊗W → Hom(V,W ) is an isomorphism.

4. dim(V ⊗W ) = dim(V ) · dim(W ).

5. If (e1, ..., en) is a basis for V and (e1, ..., em) is a basis for W , then {ei ⊗ fj} is a basis
for V ⊗W .

19



Differential Topology Morton

Definition 8.8. Let V be a finite-dimensional vector space. We define the tensor space
Vr,s of type (r, s) associated with V to be the vector space

V r ⊗ (V ∗)s := V ⊗ · · · ⊗ V︸ ︷︷ ︸
r copies

⊗V ∗ ⊗ · · · ⊗ v∗︸ ︷︷ ︸
s copies

(6)

for r, s ≥ 0. We can now define a tensor of a vector space V as

T (V ) :=
∑
r,s≥0

Vr,s =

{
T =

n∑
i=1

Trisi

∣∣∣∣ Trj ,sj ∈ Vrj .sj

}
(7)

Ti is a homogenous tensor of degree (rj, sj). T (V ) is non-commutative, associative, and a
graded algebra. We define the operation as ⊗ given by

u⊗ w := u1 ⊗ · · · ⊗ ur1 ⊗ w1 ⊗ · · · ⊗ wr2 ⊗ v∗1 ⊗ · · · ⊗ v∗s1 ⊗ w∗
1 ⊗ · · · ⊗ w∗

s2
.

8.3 Symmetric and Alternation Tensors

Definition 8.9. Let V be a finite-dimensional vector space. A covariant k-tensor α on V is
said to be symmetric if its value is unchanged by interchanging any pair of arguments

α(v1, ..., vi, ..., vj, ..., vk) = α(v1, ..., vj, ..., vi, ..., vk)

whenever i ≤ i ≤ j ≤ k.

9 Differential Forms

9.1 Exterior Algebra

Definition 9.1. Let V be a finite dimensional vector space. Define the space C(V ) as

C(V ) :=
∑
k≥0

Vk,0.

In other words, C(V ) is the sum of vec

Definition 9.2. Let V andW be finite-dimensional vector spaces. A map H : V ×· · ·×V →
H is said to be an alternating map if

1. H is multilinear

2. H(vσ(1), ..., vσ(k)) = sign(σ) ·H(v1, ..., vσ(k))

Proposition 9.3. (Properties of the Wedge Product) Let V1 and V2 be finite dimen-
sional vector spaces. Then

1. V1 ∧ V2 = −V2 ∧ V1
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2. For α ∈ Λr(V ) and β ∈ Λs(V ), we have α ∧ β = (−1)r·sβ ∧ α

3. v1 ∧ · · · ∧ vn = 0 if vi = vj for some i ̸= j.

4. If (e1, ..., en) is a basis for V , then (ei1 ∧ · · · eik) with 1 ≤ i1 < i2 < · · · < ik ≤ n is a
basis for Λk(V ).

5. dim(Λk(V )) =

(
n
k

)
6. (Universal Property) Let H : V × · · · × V → W be an alternating map. Then

there exists a unique map h : Λk(V ) → W such that H = h ◦ φ. Moreover, (Λk(V ), φ)
is unique if there exists a vector space X and a map φ̃ such that (X, φ̃) satisfies the
universal property, then there exists f : X → Λk(V ) which is an isomorphism such
that φ = f ◦ φ̃ and h̃ = h ◦ f .

H : V × · · · × V W

Λk(V )

X

H

φ
h

φ̃

h̃

9.2 The Algebra of Alternating Tensors

Let V be a finite-dimensional real vector space. Recall that the covariant k-tensor on V is
said to be alternating if its value changes sign whenever two arguments are interchanged,
or equivalently if any permutation of the arguments causes its value to be multiplied by the
sign of the permutation. Alternating covariant k-tensors are also called exterior forms or
k-covectors.

Definition 9.4. The vector space of all k-covectors on V is denoted by Λk(V ∗).

This lemma gives two more characterizations of alternating tensors.

Lemma 9.5. Let α be a covariant k-tensor on a finite-dimensional vector space V . The
following are equivalent:

1. α is alternating

2. α(v1, ..., vk) = 0 whenever the k-tuple (v1, ..., vn) is linearly dependent

3. α gives the value zero whenever two of its arguments are equal.

For computations with alternating tensors, we adopt the following notation. Given a
positive integer k. an ordered k−tuple I = (i1, ..., ik) of positive integers is called a multi-
index of length k. If
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9.3 The Wedge Product

We want to define a product operation for alternating tensors.

Definition 9.6. (Wedge Product). Let V be a finite-dimensional vector space. Given ω ∈
Λk(V ∗) and η ∈ Λl(V ∗), we define the wedge product to be the following (k+ l)−covector:

ω ∧ η :=
(k + l)!

k!l!
Alt(ω ⊗ η). (8)

Proposition 9.7. (Properties of the Wedge Product). Let V be a finite-dimensional
vector space and consider ω, ω′, η, η′ and ξ be multicovectors on V . Then, we have the
following properties:

1. Bilinearity: For a, a′ ∈ R,

(aω + a′ω′) ∧ η = a(ω ∧ η) + a′(ω′ ∧ η′)
η ∧ (aω + a′ω′) = a(η ∧ ω) + a′(η′ ∧ ω′)

2. Associativity:
ω ∧ (η ∧ ξ) = (ω ∧ η) ∧ ξ

3. Anticommutatitivity: For ω ∈ Λk(V ∗) and η ∈ Λl(V ∗),

ω ∧ η = (−1)klη ∧ ω

9.4 Exterior Derivatives

We want to generalize the differential operator on smooth forms, called the exterior deriva-
tive. To define the exterior derivative on Euclidean space, it is straightforward: given

ω ∈ Ωk(Rn) such that ω =
∑
I

ωIdx
I , we define dω to be the following (k + 1)-form

d

(∑
I

ωIdx
I

)
=
∑
I

dωI ∧ dxI ,

where dωI is the differential of the function ωI . This is flushed out as

d

(∑
I

ωIdx
i1 ∧ · · · ∧ dxik

)
=
∑
I

∑
j

∂ωI
∂xj

dxi ∧ dxi1 ∧ · · · ∧ dxik .

Example 9.8. Let f ∈ Ω0(R) = C∞(R). The formula above reduces to

df =
∂f

∂xi
dxi.
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Example 9.9. Let ω ∈ Ω1(R) be given by ω = ωidx
i. It follows that

d(ωidx
i) =

∑
i,j

∂ωj
∂xi

dxi ∧ dxj

=
∑
i<j

∂ωj
∂xi

dxi ∧ dxj +
∑
i>j

∂ωj
∂xi

dxi ∧ dxj

=
∑
i<j

(
∂ωj
∂xi

− ∂ωi
∂xj

)
dxi ∧ dxj

Note that this corresponds to taking the curl of the corresponding vector field Xω = ωi
∂
∂xi

.

Proposition 9.10. (Properties of the Exterior Derivative on Rn).

1. d is linear over R.

2. If ω ∈ Ωk(U) and η ∈ Ωl(U) where U ⊂ R is open, then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

3. d ◦ d = 0.

4. d commutes with pullbacks.

The above properties allow for the application of the exterior derivative to manifolds.

Theorem 9.11. (The Exterior Differentiation Theorem) There exists a unique ex-
tension d : Ωk(M) → Ωk+1(M) such that the following properties hold

1. d is linear over R.

2. If ω ∈ Ωk(M) and η ∈ Ωl(M), then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

3. d ◦ d = 0.

4. For f ∈ Ω0(M) = C∞(M), df is the differential of f , given by df(X) = Xf .

Proposition 9.12. Let M and N be smooth manifolds and F : M → N be a smooth map.
Then,

d(F ∗(ω)) = F ∗(dω) (9)

for any ω ∈ Ω∗(N).

Proof. Suppose first that ω = f ∈ Ω0(N). Then F ∗(f) = f ◦ F ∈ C∞(M). It follows that
d(F ∗(f)) = d(f ◦ F ). So, if v ∈ TpM , then d(F ∗(f))pv = d(f ◦ F )p(v) = df(DpF (x)). We
also calculate F ∗(df)p(v) = dfF (p)(DpF (v)). Hence, we have shown the result for a zero form.
We move to the general case. Suppose that ω ∈ Ωk(N). It is enough to argue in the manner
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above as d and F ∗ are linear. Since, d(·)p is determined by the values in a neighborhood
of p, we can prove the result in a local chart. Consider the local chart (U,φ) around F (p).
Accordingly, we have

ω|U =
∑
I

aI · dxi1 ∧ · · · ∧ dxik .

We can calculate
F ∗(ω) =

∑
I

F ∗(aI)F
∗(dxi1) ∧ · · · ∧ F ∗(dxik)

and hence

d(F ∗(ω)) =
∑
I

d(F ∗(aI) · d(F ∗xi1) ∧ · · · ∧ d(F ∗xik))

=
∑
I

d(F ∗(aI)) ∧ d(F ∗xi1) ∧ · · · ∧ d(F ∗xik)

=
∑
I

F ∗(daI) ∧ F ∗(dxi1) ∧ · · · ∧ F ∗(dxik)

= F ∗(dω).

10 Lie Derivatives

We have already covered how to make sense of directional derivatives of real-valued functions
on a manifold. Indeed, a tangent vector v ∈ TpM is by definition an operator that acts on
a smooth function f to give a number vf that we interpret as a directional derivative of f
at p.

What about the directional derivative of a vector field? Let’s first consider how this
would play out in Euclidean space. It makes sense to define the directional derivative of a
smooth vector field X in the direction of a vector v ∈ TpRn. It is the vector

DvX(p) =
d

dt

∣∣∣∣
t=0

Xt+pv = lim
t→0

Xp+tv −Xp

t
.

We can easily calculate the directional derivative by applying Dv to each component of W
separately:

DvW (p) = DvW
i(p)

∂

∂xi

∣∣∣∣
p

.

This definition is hard to generalize, however. The reason is that we are implicitly using
the fact that Rn is a vector space. That is, the tangent vectors Wp+tv and Wp can both be
viewed as elements of Rn.
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10.1 Lie Derivatives on Vector Fields

Suppose we try to generalize this a manifold M . To begin, we make the replacement of
p + tv by a curve γ(t) that starts at the point p and whose initial velocity is v. However,
this substitution still yields a fundamental error; the vectors Wγ(t) and Wγ(0) belong to
two different spaces: Tγ(t)M and Tγ(0)M , respectively. This was negated in the case of Rn

because there is a canonical identification of each tangent space with Rn itself; but, on a
generic manifold there is no such identification. Thus, there is no coordinate independent
way

We fix this problem if we replace the vector v ∈ TpM with a vector field X ∈, so we can
use the flow of X to push back values of W back to p and then differentiate. We can now
make the following definition.

Definition 10.1. Suppose that M is a smooth manifold, X is a smooth vector field on M ,
and F is the flow of X. For any smooth vector field Y on M , define a rough vector field on
M , denoted by the LXY and call the Lie derivative of Y with respect to X, by

(LXW )p =
d

dt

∣∣∣∣
p

d(F−t)Ft(p)(YFt(p))

= lim
t→0

d(F−t)Ft(p)(YFt(p))− Yp
t

,

provided the derivative exists. For small t ̸= 0, at least the difference quotient makes
sense: Ft is defined in a neighborhood of p, and F−t is the inverse of Ft, so the objects
d(F−t)Ft(p)(YFt(p)) and Yp are elements of the tangent space TpM .

Example 10.2. Let M = R2 and consider the vector fields

X = −y ∂
∂x

+ x
∂

∂y
Y =

∂

∂x
.

Let p = (x, y) and lets calculate the Lie derivative LXY . Using the above definition, we
need to calculate the flow of X. It follows that we have the system

dx

dt
= −y

dy

dt
= x

(x(0), y(0)) = (x, y).

We can hence write an equation for x(t) as

x′′(t) + x(t) = 0

which has the solution of
x(t) = x cos(t) + y sin(t).

We get that the flow Ft(x, y) is given by

Ft(x, y) =

(
cos(t) − sin(t)
sin(t) cos(t)

)(
x
y

)
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We have that YFt(p) =
∂

∂x
|Ft(p)

The above definition can be rather tedious. We present an alternate way to calculate Lie
derivatives. First, we need the following lemma on the aforementioned Lie brackets.

Lemma 10.3. Let X, Y be smooth vector fields on a manifold M with or without bound-
ary,and let X = X i ∂

∂xi
and Y = Y j ∂

∂xj
in terms of the smooth local coordinates (xi) for M .

Then

[X, Y ] = (X i∂Y
j

∂xi
−Xj ∂x

j

∂xi
)
∂

∂xj
= (XY j − Y Xj)

∂

∂xj

Proof. Because [X, Y ] is a smooth vector field, it suffices to check this on a smooth chart.
We have

[X, Y ]f = X i ∂

∂xi
(Y j ∂f

∂xj
)− Y j ∂

∂xj
(X i ∂f

∂xi
)

= X i∂Y
j

∂xi
∂f

∂xj
+X iY j ∂2f

∂xi∂xj
− Y j ∂X

i

∂xj
∂f

∂xi
− Y jX i ∂2f

∂xj∂xi

= X i∂Y
j

∂xi
∂f

∂xj
− Y j ∂X

i

∂xj
∂f

∂xi

Lemma 10.4. Let V be a smooth vector-field on a smooth manifold M , and let p ∈M be a
regular point of V . There exists smooth coordinates (si) on some neighborhood of p in which
V has the coordinate representation ∂

∂s1
.

Theorem 10.5. If M is a smooth manifold and X1, X2 are vector fields, then LX1X2 =
[X1, X2].

Proof. Suppose that V and W are vector fields of a smooth manifold M . Define the set
R(X1) as the set of points p ∈M such that p ∈M such that X1(p) ̸= 0. Note that R(V ) is
open in M by continuity, and its closure is the support of V . We want to show that

(LVW )p = [V,W ]p

for all p ∈M by considering the following three cases.
Case 1: p ∈ R(V ). In this case, we can choose smooth coordinates (ui) on a neighborhood
of p in which V has the coordinate representation V = ∂

∂u1
by the lemma. Therefore, the

denote the flow of V by Ft(u) = (u1+t, u2, . . . , un). Since F−t is just a translation, d(F−t)Ft(x)

is just the identity at every point x ∈M . Thus, for any u ∈ U ,

d(F−t)Ft(u)(WFt(u)) = d(F−t)Ft(x)(W
j(u1 + t, . . . , un)

∂

∂uj

∣∣∣∣
Ft(u)

)

= W j(u1 + t, . . . , un)
∂

∂uj

∣∣∣∣
u

.
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Therefore, by the definition of Lie derivative, we have

(LVW )u =
∂

∂t

∣∣∣∣
t=0

W j(u1 + t, . . . , un)
∂

∂uj

∣∣∣∣
u

=
∂W j

∂u1
(u1, . . . , un)

∂

∂uj

∣∣∣∣
u

.

However, using the lemma we see that

[V,W ]

∣∣∣∣
u

=
n∑
j=1

(V (W j)−W (V j))
∂

∂uj

∣∣∣∣
u

=
n∑
j=1

∂W j

∂u1
(u1, . . . , un)

∂

∂uj

∣∣∣∣
u

Since V = ∂
∂u1

.
Case 2: Let p ∈ supp(V ), Because the supp(V ) is the closure of R(V ), there is a sequence
(pi) that converges to p. By case one, we know that (LVW )pi = [V,W ]pi for every term in
the sequence. Thus,

(LVW )p = lim
i→∞

(LVW )pi = lim
i→∞

[V,W ]pi = [V,W ]p

Case 3: p ∈ M − supp(V ). In this case, V = 0 in a neighborhood of p. On one hand, this
implies that the flow is equal to the identity map in a neighborhood of p for all t. So,

(LXW )p =
d

dt

∣∣∣∣
p

d(F−t)Ft(p)(WFt(p)) =
d

dt

∣∣∣∣
p

Wp = 0

since Wp does not depend on t. Also, [V,W ]
∣∣
p
is also zero since V (p) = 0.

This theorem provides us with a geometric interpretation of the Lie bracket of two vector
fields: it is the directional derivative of the second vector field along the flow of the first. We
now present the following properties of the Lie derivative.

Corollary 10.6. Suppose that M is a smooth manifold and V,W,X are smooth vector fields
on M . It follows that

1. LVW = −LWV

2. LL[V,X] = [LVW,X] + [W,LVX]

3. L[V,W ]X = LV LWX − LWLVX

4. If g ∈ C∞(M), then LV (gW ) = (V g)W + gLVW

10.2 Lie Derivatives on Forms

We now consider how to calculate Lie derivatives of differential forms over vector fields.
Before we do so, we need to understand how vector fields and differential forms interact with
each other.

27



Differential Topology Morton

Definition 10.7. Let M be a smooth manifold and X be a vector field. We define the
interior product via the map

ιX : Ωk(M) → Ωk−1(M)

which sends k forms to k − 1 forms via the property

(ιXω) (X1, ..., Xk) = ω(X,X1, ..., Xk−1)

for any vector fields X1, ..., Xk on M .

We briefly mention two important properties of the interior product in the following
proposition.

Proposition 10.8. (Properties of ι): Let M be a smooth manifold. For vector fields X
and Y and differential forms ω, α, β ∈ Ωk(M), we have

1. ιXιY ω = −ιY ιXω

2. the Leibniz rule: ιX(α ∧ β) = (ιXα) ∧ β + (−1)kα ∧ (ιXβ).

We begin with a formal definition as we did for Lie derivatives of vector fields.

Definition 10.9. Let M be a smooth manifold. The Lie derivative of a differential form
ω ∈ Ωk(M) respect to a vector field X is defined by

LXω :=
d

dt

∣∣∣∣
t=0

F ∗
t ω = lim

t→0

F ∗
t ω − ω

t
, (10)

where Ft is the local flow generated by the vector field X.

Next, we provide a useful identity for Lie derivatives and wedge products of differential
forms.

Proposition 10.10. Suppose that M is a smooth manifold, X ∈ and ω, η ∈ Ω∗(M). Then,

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη)

We now provide the main result for Lie derivatives on differential forms.

Theorem 10.11. (Cartan’s Formula) On a manifold M , for any smooth vector field X
and any smooth differential form ω,

LXω = X (11)

11 Orientation

We now discuss the topic of orientation. In the case of a line, the orientation is simply which
direction in which you traverse it. We need to extend this idea to a manifold, which will be
important in the theory of integration on manifolds.
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11.1 Orientations of Vector Spaces

We begin with the orientations of vector spaces. The simplest vector spaces are Rn. In the
case of R1, we choose a basis that points to the right (the positive direction). A similar
choice is made for R2. A natural family of preferred ordered bases for R2 consists of those
for which the rotation from the first vector to the second vector is in the counterclockwise
direction. Similarly, for R3, we use the so-called ”right-hand rule” to find the direction of
the third basis vector.

These methods all have one thing in common: the bases are the ones whose transition
matrices from the standard basis have positive determinants. We can generalize to the
following definition:

Definition 11.1. Let V be a real-valued vector space of dimension n ≥ 1. We say that two
ordered bases (e1, ..., en) and (ẽ1, ..., ẽn) for V are consistently oriented if the transition
matrix defined by

ei = Bj
i ẽj

has a positive determinant.

Definition 11.2. For a vector space V whose dimension is n ≥ 1, we define an orientation
for V as an equivalence class of ordered bases.

There is an important connection between orientations and alternating tensors.

Proposition 11.3. Let V be a vector space of dimension n. Each nonzero element ω ∈
Λn(V ∗) determines and orientation Oω of V as follows: if n ≥ 1, then Oω is the set of
ordered bases (e)

11.2 Orientations of Manifolds

Definition 11.4. Let M be a smooth manifold. We define the pointwise orientation of
M to be a choice of orientation of each tangent space.

Pointwise orientation is missing some important relations about how the orientations of
nearby points relate to each other. We would like there to be a relationship between the
orientations and the smooth structure of the manifold.

Definition 11.5. LetM be a smooth manifold of dimension n endowed with some pointwise
orientation. If Ei is a local frame of the tangent space of M , we say that Ei is positively
oriented if (E1

∣∣
p
, ..., En

∣∣
p
) is a positively oriented basis for TpM . Similarly, we say that we

say that Ei is negatively oriented if (E1

∣∣
p
, ..., En

∣∣
p
) is a negatively oriented basis for TpM .

A pointwise orientation is said to be continuous if every point of M is in the domain of
an oriented local frame. An orientation of M is a continuous pointwise orientation. An
oriented manifold is an ordered pair (M,O) where M is an oritentable smooth manifold
and O is a choice of orientation for M .

Example 11.6. We consider a simple example. If M is a zero dimensional manifold, then
an orientation on M is a choice of +1 or −1 attached to each of its end points.
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12 Integration

Our goal is to develop a theory of integration over manifolds. Since we study manifolds by
considering charts that live on Rn, we begin with a review of Riemann integration on Rn

12.1 Riemann Integration on Rn

Let D ⊂ Rm and f : A → R be smooth such that A ⊂ Rn. For D ⊂ A, define the Riemann
integral as ∫

D

f(x)dx1 · · · dxn := lim
ki→∞

k1∑
i1=1

· · ·
kn∑
in=1

f(x∗i1,...,in)∆x1 · · ·∆xn (12)

We also have the change of coordinates theorem.

Theorem 12.1. Let

12.2 Integration of Differential Forms

On Rn, consider the standard coordinates (e1, ..., en). Then, de1 ∧ · · · ∧ den gives a vector
bundle isomorphism:

Ωn(Rn) → Rn × R.

Definition 12.2. Let D ⊂ R be the domain of integration and ω ∈ Ωn(Rn). Then, we define
the integral of ω over the domain D as∫

D

ω :=

∫
D

α de1 ∧ · · · ∧ den. (13)

Proposition 12.3. Let φ : V → A ⊃ D be a diffeomorphism. Then,∫
φ−1(D)

φ∗(ω) = ±
∫
D

ω

for any ω ∈ Ωn(A).

Proof. Let ω ∈ Ωn(A). By definition, there exists α ∈ C∞(M) such that ω = α de1∧···∧den.
It follows

φ∗(ω) = φ∗(α) · φ∗(de1) ∧ · · · ∧ φ∗(den)

= (α ◦ φ) · det
(
∂φi
∂ej

)
de1 ∧ · · · ∧ den

and hence ∫
φ−1(D)

φ∗(ω) =

∫
φ−1(D)

(α ◦ φ) det
(
∂φi
∂ej

)
de1 ∧ · · · ∧ den
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There are now two cases: if det

(
∂φi
∂ej

)
> 0 or det

(
∂φi
∂ej

)
< 0. If det

(
∂φi
∂ej

)
> 0, we can

use the change of variables formula. Otherwise, we have that∫
φ−1(D)

(α ◦ φ) det
(
∂φi
∂ej

)
de1 · · · den = −

∫
φ−1(D)

(α ◦ φ)
∣∣∣∣det(∂φi∂ej

)∣∣∣∣ de1 · · · den
= −

∫
D

ω

where the last equality above follows from the change of coordinates theorem.

Proposition 12.4. (Properties of Integrals of Forms). Suppose that M and N are
non-empty oriented smooth n-manifolds and ω and η are compactly supported n- forms on
M .

1. Linearity: If a, b ∈ R, then∫
M

aω + bη = a

∫
M

ω + b

∫
M

η

2. Orientation Reversal: If −M denotes M with the opposite orientation, then∫
−M

ω = −
∫
M

ω

3. Positivity: If ω is a positively oriented orientation form, then∫
M

ω > 0

12.3 Integration on Manifolds

Definition 12.5. Let M be a smooth oriented n− manifold that is compact. Let (Ui, φi)
k
i=1

be an oriented atlas on M and (fi) be a subordinate partition of unity. Define∫
M

ω :=
k∑
i=1

∫
φi(Ui)

(
φ−1
i

)∗
(fiω)

Proposition 12.6. The definition above for the integral on manifolds is independent of the
atlas or the partition of unity.

Definition 12.7. Let D ⊂ M . We say that D is a regular domain if, for each point in
M , one of the following holds:

1. there exists an open neighborhood U of p such that U ⊂ D

2. there exists an open neighborhood U of p such that U ⊂M\D
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3. there exists a chart (U,φ) that contains p such that φ(U) ∩ H = φ(U ∩D), where H
is the upper half plane in n dimensions.

Remark. For a smooth n dimensional manifold M , the boundary ∂M has dimension n− 1.

Theorem 12.8. Stokes’ Theorem: LetM be a smooth n-dimensional orientable manifold,
D ⊂ M be a regular domain, and ω be an n − 1-form on M or an open set containing D.
Then, ∫

∂D

ω =

∫
D

dω (14)

We first discuss the induced orientation on the boundary ∂M . The standard orientation

on Rn is given by the coordinates (x1, ..., xn), or equivalently

(
∂

∂x1
, ...,

∂

∂xn

)
is a positively

oriented basis for the tangent space TpRn. Then, M is oriented if and only if, for each point

p, we have that

(
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

)
is an oriented basis for TpM . We say that (V1, ..., Vn−1)

is an oriented basis for ∂M if (n, V1, ..., Vn) is an oriented basis for the tangent space TpM .
We claim that this is well-defined and independent of the choices.

12.3.1 Examples of Stokes’ Theorem

We now provide some useful examples of how to apply Stokes’ Theorem before we prove the
theorem. These formulae will be familiar from a class in vector analysis.

Example 12.9. Let M = R and D = [a, b] where b > a. It follows that ∂D = {a, b}, a
0−dimension manifold. We note that the orientation of ∂D comes down to a choice in the
sign. Indeed, a basis for the tangent space TaR is given by ∂/∂x. We can now apply Stokes’
Theorem. It follows that ∫

[a,b]

df =

∫
[a,b]

∂f

∂x
dx

=

∫
[a,b]

f ′(x)dx

and picking the positive orientation of ∂D, we have∫
∂D

f = +f(a)− f(b).

Combining yields ∫
[a,b]

f ′(x) dx = f(a)− f(b),

the Fundamental Theorem of Calculus.
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Example 12.10. Let M = R2 and ω ∈ Ω1(R2). Then, ω has the form ω = f(x, y)dx +
g(x, y)dy for f, g ∈ C∞(R2). We calculate the exterior derivative of ω as

dω = d(f(x, y)dx+ g(x, y)dy)

=
∂f

∂x
dx ∧ dx+ ∂f

∂y
dy ∧ dx+ ∂g

∂x
dx ∧ dx+ ∂g

∂y
dy ∧ dx

=
∂f

∂y
dy ∧ dx+ ∂g

∂x
dx ∧ dy

=

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy

Substituting into Stokes’ Theorem yields∫ ∫
D

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy =

∫
∂D

f(x, y)dx+ g(x, y)dy,

which is known as Green’s Theorem.

Example 12.11. Let M2 ⊂ R3 and ω ∈ Ω1(R3). Then ω has the form ω = f(x, y, z)dx +
g(x, y, z)dy + h(x, y, z)dz for f, g, h ∈ C∞(R3). We calculate the exterior derivative of ω as

dω = d (f(x, y, z)dx+ g(x, y, z)dy + h(x, y, z)dz)

=
∂f

∂y
dy ∧ dx+ ∂f

∂z
dz ∧ dx+ ∂g

∂x
dx ∧ dz + ∂g

∂z
dz ∧ dy + ∂h

∂x
dx ∧ dz + ∂h

∂y
dy ∧ dz

=

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy +

(
∂f

∂z
− ∂h

∂x

)
dz ∧ dx+

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz

Substituting into Stokes’ Theorem yields∫ ∫
D

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy +

(
∂f

∂z
− ∂h

∂x

)
dz ∧ dx+

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz

=

∫
∂D

f(x, y, z)dx+ g(x, y, z)dy + h(x, y, z)dz

which is known as Stokes’ Theorem.

Example 12.12. Let M and ω ∈ Ω2(R3). Then ω has the form ω = f(x, y, z)dx ∧ dy +
g(x, y, z)dy∧dz+h(x, y, z)dz∧dx for f, g, h ∈ C∞(R3). We calculate the exterior derivative
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of ω as

dω = d (f(x, y, z)dx ∧ dy + g(x, y, z)dy ∧ dz + h(x, y, z)dz ∧ dx)

=

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dx

)
∧ dx ∧ dy

+

(
∂g

∂x
dx+

∂g

∂y
dy +

∂g

∂z
dx

)
∧ dy ∧ dz

+

(
∂h

∂x
dx+

∂h

∂y
dy +

∂h

∂z
dx

)
∧ dz ∧ dx

=
∂f

∂z
dz ∧ dx ∧ dy + ∂g

∂x
dz ∧ dx ∧ dy + ∂h

∂y
dz ∧ dx ∧ dy

=

(
∂f

∂x
+
∂g

∂y
+
∂h

∂z

)
dx ∧ dy ∧ dz

Substituting into Stokes’ Theorem yields∫
M

(
∂f

∂x
+
∂g

∂y
+
∂h

∂z

)
dx ∧ dy ∧ dz

=

∫
∂M

f(x, y, z)dx ∧ dy + g(x, y, z)dy ∧ dz + h(x, y, z)dz ∧ dx

which is known as the divergence theorem.

Remark. In a vector calculus course, these theorems are commonly written using the dif-
ferential operators curl and divergence. Although these quantities seem foreign at first, we
have shown that they are nothing more than the exterior derivatives of one and two forms
in R3.

12.3.2 Proof of Stokes’ Theorem

We now prove Stokes’ Theorem in its most general form. Before we do so, we need to prove
a more specific result: Stokes’ Theorem on p-chains. Let σ be a p-chain and ω be a p-form.

We can write σ =
∑
i

ciσi, where σi is a singular p-simplex. We define the integral of ω over

σ as ∫
σ

ω =
∑
i

ci

∫
σi

ω =
∑
i

ci

∫
∆p

σ∗
i (ω). (15)

We now state Stokes’ Theorem over a p-chain.

Theorem 12.13. Let M be a compact smooth manifold of dimension n, ω ∈ Ωp−1(M), and
σ be a p-chain. Then we have ∫

σ

dω =

∫
∂σ

ω (16)

Proof. Let σ be a p-chain. We can decompose σ into singular p-simplices: σ =
∑
i

ciσi. As

the integral is linear, it is enough to show the result for an arbitrary singular p-simplex, σi.
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Case 1: p = 1: Let σ be a singular 1-simplex and ω ∈ Ω0(M). Then, ω = f ∈ C∞(M).
We have that σ : [0, 1] → M , ∂σ = σ(1)− σ(0), ∆0 = {0}, and ∂∆1 = {0} ∪ {1}. It follows
that ∫

σ

df =

∫ 1

0

d(f ◦ σ) = f ◦ σ(1)− f ◦ σ(0)

where the last equality follows from the fundamental theorem of calculus in one-dimension.
We also calculate that ∫

∂σ

f = f ◦ σ(1)− f ◦ σ(0).

Hence, we have the result for p = 1.
Case 2: p > 1: Let ω ∈ Ωp−1(M). As σ∗(ω) ∈ Ωp−1(∆p) has a basis, we can use the
standard basis to write

σ∗(ω) =

p−1∑
i=1

fi dx1 ∧ · · · ∧ dx̂j ∧ · · · ∧ dxp.

It follows that ∫
σ

dω =

∫
∆p

σ∗(dω)

=

∫
∆p

d(σ∗ω)

=

∫
∆p

p−1∑
i=1

(∑
j

∂fi
∂xj

dxj

)
∧ dx1 ∧ · · · ∧ dx̂j ∧ · · · ∧ dxp

=

∫
∆p

∑
i

(−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxp

=
∑
i

(−1)i−1

∫
∆p

∂fi
∂xi

dx1 · · · dxp

We now consider

∫
∂σ

ω and see that

Proof. Consider σα : ∆m → M a regular domain with respect to D, oriented n−simplices
and ∇α diffeomorphism. Note that ∇α extends to a C∞ function in a neighborhood of ∆n

in Rn. Then, ∆n has one of the following two forms:

1. σα(∆
n) ⊂ int(D): Type 1

2.

For any p ∈ D, then there exists a diffeomorphism ∇α of either type 1 (if p ∈ int(D)) or
type 2 (if p ∈ ∂D) such that p ∈ σα(∆

n).
Let {(Uα, φα)} be a covering of D such that either Uα ⊂ σα(∆

n) where σα is of type 1
or Uβ ∩ σβ(∆

n) for σβ of type 2. The compactness of M implies that there exists a finite
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subcovering. Accordingly, let {fi} be a subordinate partition of unity. It follows that we can
write ∫

D

dω =
∑
i

∫
D

d(fiω).

As supp(d(fiω)) ⊂ σi(∆
n), we have∫

D

dω =
∑
i

∫
σi

d(fiω) =
∑
i

∫
∂σi

d(fiω)

where the last equality follows from Stokes’ Theorem on simplices. We now have two cases.
If σi is of type 1, then fi

∣∣
∂σi

= 0. If σi is of type 2, then the only terms on the nth face play
a role. So, it follows that∑

i

∫
∂σi

d(fiω) =
∑
i

(−1)n
∫
∆n−1

(
σi ◦Kn−1

n

)∗
(fiω)

=
∑
i

(−1)n
∫
∆n−1

fi
(
σi ◦Kn−1

n

)
· (σi ◦Kn−1

n )∗ω

=
∑
i

(−1)n(−1)n
∫
σi◦Kn−1

n

fiω

=

∫
∂D

ω.

13 DeRham Cohomology

Definition 13.1. Let M be a smooth manifold. Consider ω ∈ Ωp(M). If dω = 0, we say
that ω is closed.

Definition 13.2. Let M be a smooth manifold. The exterior derivative is a map d :
Ωp(M) → Ωp+1(M), the image and kernel are linear subspaces. Define the following spaces:

Zp(M) = Ker (d) = {closed p-forms on M} Bp(M) = Im(d) = {exact p-forms on M}.

Definition 13.3. Define the de Rham cohomology group of degree to be the quotient
vector space

Hp
deR(M) =

Zp(M)

Bp(M)
(17)

Example 13.4. Let M = S1. Then,

Hp
deR =


0 p ≥ 2

R p = 1

R p = 0.
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Proof. Case p = 0:

Proposition 13.5. LetM be a compact, connected, oriented n−manifold. Then Hp
deR(M) ∼=

R.

Proof. Let α ∈ Ωp(M). As M is an oriented manifold, there exists γ ∈ Ωn(M) such that
on a local chart U which is compatible with the orientation, γ|U = f dx1 ∧ · · · ∧ dxn such

that f > 0. It follows that

∫
M

γ =
m∑
i=1

∫
φ(Ui)

φifidx1 ∧ · · · ∧ dxn > 0. Define the function

F : Ωn(M) → R be given by

α 7→
∫
M

α.

From above, we showed that F is a surjective linear map. Let α ∈ Ωp(M) be exact. Then,

there exists η ∈ such that α = dη. It follows that

∫
M

α =

∫
∂M

η = 0. Hence, the set of exact

forms lives in the kernel of F . Moreover, F induces a linear surjective map F̃ : Hn
deR(M) → R.

Example 13.6. LetM = R2 and choose a coordinate system (x, y). Consider the standard
volume form on R2 given by ω = dx ∧ dy. We can write this as d(xdy), hence ω is exact.
We can switch to polar coordinates by

x = r cos(θ) ⇒ dx = cos(θ)dr − r sin(θ)dθ

y = r sin(θ) ⇒ dy = sin(θ)dr + r cos(θ)dθ.

We can then rewrite ω as
dx ∧ dy = rdr ∧ dθ

Theorem 13.7. (Homology Invariance) Let M and N be a smooth manifolds and con-
sider the map F : M × (−ϵ, 1 + ϵ) → N which is smooth and let Ft : M → N be such that
Ft(x) = F (x, t). Then the induced map on the cohomology

F ∗
t : Hp

deR(N) → Hp
deR(M)

satisfies the property that F ∗
0 = F ∗

1 .

Corollary 13.8. Hp
deR(Rn) = 0 for p ≥ 1.

Proof. Let F : Rn × [0, 1] → Rn be given by F (x, t) = t · x. Let [α] ∈ Hp
deR(Rn). It follows

that [α] = [F ∗
1 (α)] = [F ∗

0 (α)] = 0.

Corollary 13.9. For a smooth manifold M , we have Hp
deR(M ×Rn) ∼= Hp

deR(M) for p ≥ 1.

Corollary 13.10.

Hp
deR(S

n) =

{
R p = 0, n

0 p ̸= 0, n
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Proof. For the case p = 0, Sn is connected. From Proposition ??, H0
deR(S

n) = R. Similarly,
if p = n, Sn is connected, compact, and orientable. Again, Proposition ?? yields that
Hn
deR(S

n) = R.
Consider Sn = U ∪ V where U and V are the coresponding stereographic projections: U =
Sn\{N} and V = Sn\{S}. We have that U, V ∼= Rn. Let α be a closed one-form. Then,
α|U is exact and hence there exists f ∈ C∞(U) such that α|U = df . Similarly, α|V is exact
and hence there exists g ∈ C∞(V ) such that α|V = dg. On the intersection U ∩ V , we have
dg = df where U ∩ V = Rn\{p} ∼= Sn−1 × (0,∞). Then, d(f − g) = 0 which provides that
f − g = C, where C is a constant. Define the map f̃ : Sn → R such that f̃(x) = f(x) if
x ∈ U and f(x) = g(x) + c if x ∈ V . Then we have that df̃ = df when x ∈ U and df̃ = dg
when x ∈ V . It follows that df̃ = α.
For 1 < p < n, we use induction on n. For n = 1, we have H1

deR(S
1) ∼= R. As above,

consider Sn = U ∪ V where U ∩ V = Rn\{p} ∼= Sn−1 × (0,∞) and hence Hp(U ∩ V ) ∼=
Hp(Sn−1) = 0 if 1 ≤ p ≤ n − 1. Let ω ∈ Ωp(Sn) be a closed form, As U, V ∼= Rn, there
exist α, β ∈ Ω1(U or V ) such that ω|U = d(α) and ω|V = dβ. Hence, we have that dα = dβ
which yields d(α − β) = 0. It follows that α − β ∈ Ωp(Sn−1 × R). As Hp−1

deR (S
n−1 × R) = 0,

then α − β = dη for η ∈ Ωp−2(U ∩ V ). Let U ′ ⊂ U and V ′ ⊂ V be open subsets such that
U ′ ∩V ′ ∼= Sn−1 × (−2, 2). Next, let φ be a bump function on R such that supp(φ) ⊂ (−2, 2)
and φ|(−1,1) = 1. Let η̃ = φ · η be the extension of φη on S

n and Ũ ⊂ U ′ and Ṽ ⊂ V ′ be such

that Ũ ∩ Ṽ ∼= Sn−1 × (−1, 1). Consider α̃ = α− d(φη)|Ũ

13.1 Mayor-Viatoris Sequence for the DeRham Cogomology

Definition 13.11. A sequence

0 → A
α−→ B

β−→ C → 0

is exact if Im(α) = Ker(β). At A, α is injective; at B, β is surjective; and at C, B/α(A) ∼= C.
For vector spaces: B ∼= A⊕ C. This idea is generalized to a long sequence when

...→ Ak
fk−→ Ak+1

fk+1−−→ Ak+2 → ...

such that Im(fk) = Ker(fk=1) ⊂ Ak+1.

Theorem 13.12. Let M be a smooth manifold and U and V be such that M = U ∪ V .
Then, there exists a long exact sequence

· · · → Hp−1
deR

i∗,j∗−−→ Hp−1
deR (U)⊕Hp−1

deR (V )
π∗
−→ Hp−1

deR (U ∩ V )
δ−→ Hp

deR(M) → · · ·

13.2 The deRham Theorem

Theorem 13.13. deRham Theorem Let M be a smooth compact manifold , then the map

Hk
deR(M) → (Hk(M,R))∗

given by

[ω] 7→
∫
σ

ω

where σ is a k−chain given by σ = aiσi such that σk : ∆
k →M is an isomorphism.
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Consequences of the deRham theorem

1. Hk
deR(M) is a finite dimensional vector space.

2. If there exists a basis {σ1, ..., σn} of Hk(M ;R), then the cohomology class can be

identified by evaluating

∫
σ1

ω, ...,

∫
σn

ω for some ω such that a = [ω].

13.3 Poincaré Duality

Let M be a compact oriented n-dimensional smooth manifold. Then, there exists a natural
isomorphism

Hk
deR(M) → Hn−k

deR (M)

associated to the non-singular pairing: ⟨[ω], [α]⟩ =
∫
M
ω∧α. Here, the inner product is given

by
⟨·, ·⟩ : Hk

deR(M)×Hk
deR(M) →

(
Hn−k
deR (M)

)∗ ∼= Hn−k
deR (M).

In local coordinates, consider the k−form ω = f dx1∧· · ·∧dxk This construction is coordinate
dependent. To have a global construction, we need to introduce a new operator. Consider
the following inner product defined by

⟨·, ·⟩p : TpM × TpM → R.

This naturally induces an oriented orthonormal basis: {e1, ..., en}. We can consider its dual
basis: {de1, ..., den} of the cotangent space T ∗

pM where deI = dei1 ∧ · · · ∧ deik of Λk(T
∗
pM).

We call the above dual basis the standard volume form compatible with orientation and
independent of basis.
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