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1 Review of Point Set Topology

Before we dive into differential geometry, we will review some important aspects of point set
topology. We begin with the definition of a topology.

Definition 1.1. A topology for a set X is a collection 7 of subsets of X such that:
1. The intersection of any two members of T is also in 7.
2. The union of any number of members of 7T is also in 7.
3. XeT
4. 0T

We call the pair (X, 7)) a topological space and the elements of X are called points. The
members of 7 are called open subsets of X.

Example 1.2. We provide two trivial examples of a topology on a set X.

1. The discrete topology: 7 = {All subsets of X}.
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2. The indiscrete topology: 7 = {0, X }.

Definition 1.3. A basis for a topology for X is a collection B = {B;};c; of subsets of X
such that

2. if x € B; N B, then there exists a k € [ such that z € B, C B, N B;.

Definition 1.4. A subbasis for a topology T for a set X is a collection A = {A;}ic; of
subsets of X such that the family of finite intersections of members of A is a basis for 7.

Definition 1.5. A neighborhood of x € X is an open set of X containing x. A subset of
X is open if and only if it is a neighborhood of each of its points. A subset is closed if its
complement is open.

We now introduce some important definitions of properties of a space X.
Definition 1.6. Let X be a space.

1. We say that X is a Ty-space if, for each pair of distinct points xz,y € X, there is a
neighborhood U, of X such that y ¢ U, or there is a neighborhood U, of y such that
x ¢ U,.

2. We say that X is a Ti-space if, for each pair of distinct points x,y € X, there exist
neighborhoods U, and U, of x and y, respectively, such that x ¢ U, and y ¢ U,.

3. We say that X is a Ty-space if, for each pair of distinct points z,y € X, there exist
disjoint neighborhoods U, of  and U, of y. A Ts-space is also called a Hausdorff
space.

4. We say that X is a T3-space if, given any closed set D C X and a point z € X — D,
there exist open sets U and V such that UNV, D C U, and x € V. We say X is
regular if it is 77 and T3.

5. A space X is T} if, for each pair of disjoint closed sets A and B, there are disjoint open
sets U and V such that A C U and B C V. We say that X is normal if it is 77 and
Ty.

2 Introduction to Differential Manifolds

Definition 2.1. A topological manifold of dimension n is a set M such that
1. M is a Hausdorff space

2. at each point in M, there is a neighborhood U with is homeomorphic to an open set
in R™.
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Definition 2.2. If the charts (U, ¢) and (V, 1)) are such that UNV = (), the composite map
Yo lipUNV)—=(UNV)

is called the transition map from ¢ to 1, We say that two charts (U, ¢) and (V1)) are C*>
comparable if their compositions ¢ o ¢~! and ¢ o o' are also C°°.

Definition 2.3. A differentiable structure on a topological manifold M is given by a
family U = {(Uq, ¢a) }acr of coordinate neighborhoods such that

1 U, Us=M
2. for all o, B € I, the charts (U,, ¢,) and (Us, @) are C* comparable
3. Any chart (V1) comparable with (U,, ¢, ) is itself in U.

A C* manifold is a topological manifold together with a C*° differentiable structure on the
manifold. If (M,U) satisfies properties 1 and 2, we call this an atlas on M. If (M,U)
satisfies properties 1, 2, and 3, we call this a maximal atlas on M.

Remark. Two atlases are comparable if their union forms an atlas.
Proposition 2.4. Let M be a topological manifold. Then, the following hold:
1. Every smooth atlas (M,U) is contained in a unique mazimal smooth atlas.

2. Two atlases determine the same smooth if and only if their union is a smooth atlas.

2.1 Examples

We now provide a set of examples of smooth manifolds.
1. The Cartesian plane R™ is a smooth manifold with atlas U = {(R"™,id)}.
2. The n-sphere defined by
S ={(21, ey o) ER | 23+ L+ 22, =1} (1)

is a smooth manifold. We provide two examples of atlases. The first atlas has two
charts given by stereographic projection. Define the north and south poles as

N =(1,0,...,0) S =(-1,0,...,0)
and the stereographic projection given by

My : S"n{N} — R"

T2 T,
(1, oy Ty 10— ( , . )

-2 71—
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3. Hyperboloid: The hyperboloid is defined as
H" = {(x1, ... tn1) ER™ | 2] — (25 + .. 4+ 27,,) = 1}. (2)
The smooth structure is given by two charts. The first is given by
H, ={(z1,..,2p41) € H" | 21 > 0}

with the projection given by
H+ . H+ —

Proposition 2.5. We have the following proposition pertaining to products of manifolds.
1. Let M™ be an n-manifold and U C M be an open subset. Then, U is an n-manifold.
2. Let M™ ..., M"™ be manifolds of degree ny, ...,ny, respectively. Then,
M x - x M™*
admits a canonical smooth structure of a ny + ... + n, manifold.

Definition 2.6.

2.2 Smooth Functions and Mappings

We now discuss functions between smooth manifolds and some of their properties. We first
define what it means for a function on smooth manifolds to be smooth.

Definition 2.7. Let M™ be a smooth manifold, k¥ € N, and f : M — R* be a function. We

say that f is a smooth function if for every p € M, there exists a smooth chart (U, ) on
M such that p € U and the composite fop™! is smooth on the open subset U := ¢(U) C R".
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Remark. The most important special case is that of smooth-real values functions given by
f:M—R
and denote it by C*(M).

Definition 2.8. Let f : M — R* be a function and let (U, ) be a chart for M. Define the
function f : p(U) — R¥ by f(z) = fo¢~(z). We call f the coordinate representation
of f.

Next, we generalize the idea of a smooth function to maps between smooth manifolds.
Definition 2.9. Let M and N be manifolds of dimension m and n, respectively.
Proposition 2.10. Fvery smooth map is continuous.

Proof. Let M and N be smooth manifolds and suppose that f : M — N is smooth. Given
some p € M, the smoothness of f implies that there are smooth charts (U, ) containing p
and (V1) containing f(p) such that f(U) C V and the map o foo™ : p(U) = ¢(V) is
smooth. O]

Definition 2.11. Let f : M — N be a function between manifolds M and N. We say
that f is smooth if f is smooth at each point p € M. We call f a diffeomorphism if the
following are true:

1. f is smooth,
2. f is bijective,
3. f~!is smooth.
Proposition 2.12. Let M, N, P be manifolds. Then the following maps are smooth.
1. ¢: M — N, the constant map is smooth
2. id : M — N, the identity 1s smooth
3. If U C M is open, then the inclusion
1:U—=>M

s smooth.

4. If f: M — N and g : N — P are smooth, then the composition
gof:M—P
15 also smooth.

Remark. We remark that for a diffeomorphism, the smooth and bijective criterion are not
enough. Consider the function f : R — R given by f(x) = 23. It is clear that f is smooth
and bijective. However, its inverse is not smooth at 0. Hence, it does not follow that f is a
diffeomorphism from
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Proposition 2.13. We compound some important properties about diffeomorphisms.
1. Every composition of diffeomorphisms is a diffeomorphism.
2. FEvery finite product of diffeomorphisms between smooth manifolds diffeomorphism.
3. Fwvery diffeomorphism is a homeomorphism and an open map.
Example 2.14. We now provide some basic examples of smooth maps.
1.

Definition 2.15. Let g : R" — R™ be smooth and let g € R", then we say that g is
submersion of x of its differential map

D, g:R"—R"

_ 9y
Das = (52 ) (a0

Proposition 2.16. Let f : M™ — N" be smooth. Then, f is a

given by

is surjective.

1. submersion at mg € M™ if and only if m > n and the rank of D@(mo)f equals n.

Theorem 2.17. (Inverse Function Theorem) Let U C R™ and f: U — R™ be smooth.
Assume that
Duf :R* — R"

for some xg € R™. Then, there exists a neighborhood U C U of xo such that
f|U : U — R"

1s a diffeomorphism and
-1

Do) (f71) = (Dy,, f)

Definition 2.18. Let M, N be smooth manifolds and let f : M — N be smooth. Then, f
is a submersion

Definition 2.19. Let U = (U,)aea be an open cover for a smooth manifold M. A partition
of unity subordinate to ¢ is a family of smooth function

{% : M — R}aEM
such that
L. ¥q(x) C [0,1] and supp(¢a) C U,

2. the induced family of supposed {supp(u,)} is locally finite and

3. Zz/;a(p) =1 for each p € M.

a€cA
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2.3 Bump Functions
We end this section with a few remarks on bump functions.

Definition 2.20. We call a function ¥ a bump function if it is smooth and compactly
supported. We create a bump function in the following way. Set

e 1/t t>0
f =
0 t <O0.
Next, set
f(t
g(t) = &)

and we can finally set
U(t) =g(t+2)g(2 —1)

Let M be a smooth manifold with (U, ) as a local chart of M. Let ¢ : U — R be
smooth. Then, K - ¢, where K : M — R is a smooth bump function with supp(K) C U is in
C*(M) in a neighborhood p € V C U and K - gp‘U = 1. Hence, if M is a smooth manifold,

U is a chart in M, and f € C®(U), we can extend to a function f € C°(M) such that
fly=1.

3 The Derivative of a Function and the Cotangent Space

3.1 The Derivative of a Function

We define the space C°(M) as the set of all smooth functions from M to R. We now
motivate the idea of the derivative of a function on a manifold. Let M be a smooth manifold
and consider two charts (U, ¢) and (V, ) such that there exists p € M such that p e UNV.

Define f = f o o tand f = fo1~!. We have that

Dy f = (g—;w», %<¢<p>>)

For notational ease, set 1) o ¢ := y(x) and p o p~! = x(y). For i € {1,...,n}, we have

OF _0f| os
Ay j Oz, ¢(p) Ay ¥(p)
It follows that
Oz Oz
o (o7 o7 % Ly O i)
v/ = 0x; 0x,, . : :
¢(p) ¢(p) oz, oz,
M1 [y(p) Yn | )
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and we arrive at )

— = 6’%
Dy f = Do) f - (8y<
j

¥(p)
This calculation demonstrates that D, f depends on the chart used. An image for the

above argument is presented below.

M
o(U)

¢

3.2 The Cotangent Space

We now define the cotangent space of a manifold. First, let the subspace Z, C C*°(M) be

given by
Zy ={f € C% | Dy = 0}.

Note that Z, does not depend on the choice of charts.

Definition 3.1. Let M be a smooth manifold and p € M. We define the cotangent space

at p as
T;M =C>*(M)/Z,. (3)

Proposition 3.2. Let M be a smooth manifold of dimension n and p € M. Then the
following hold:

1. The cotangent space T;M 1is an n—dimensional vector space

d
2. If (U, @) is a coordinate chart with coordinates (1, ..., x,), then the elements (d— Rl )
T x
p nlp
form a basis for the cotangent space T,y M.
8. If f € C®(M) and in the coordinate chart f o o' = f(x1,...,x,), then D,f =
of d
Z 8f (cp(p))d where D, f is the image of f in the quotient space C*(f)/Z,.
€T; X;
I p
Proof. Let m; : R®™ — R be the i*" coordinate projection. Th O

9
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Definition 3.3. Let M be a smooth manifold and p € M. Define the tangent space at
p given by T, M as the dual space of T;M. Note that this space does not depend on any
charts.

Definition 3.4. A tangent vector at p € M is a linear map X, : C*°(M) — R satisfying
the Leibniz rule at p:

X,(fg) = Xp(fg(p) + f(p) Xp(9)

Lemma 3.5. Let M be a smooth manifold and X, be a tangent vector at p. If D,f = 0,
then X,(f) = 0.

Proof. Let (U, ¢) be a chart on M at p. The fundamental theorem of calculus provides

o) =50 = [ 5% (Foto) ~ e — olo)

- /0 Z ggi (¢(p)) =tz — »(p))) - (z: — @(p))dt
- Zw' ; S;Z (e(p)) =tz — ¢(p))) dt

7 v~

Let G;,H; : M — R be the globalizations of g; and h;, respectfully. Consider a bump
function K and define

It follows that

4 The Tangent Space

We now introduce some basic tools used to study differentiable manifolds. We will first
define the tangent space denoted by T,,M, at a point p € M, which we can consider as an
analog to the directional derivative of a C'*° function on a smooth manifold. We will also
see that for a smooth function F' : M — N, there is an induced linear map between the
tangent spaces, Iy : T,M — Tpy) N, at each point p € M. Associated to a coordinated
system around a point p will be a basis of 7),M. Assigning a vector X,, to each point p € M
constructs a vector field on M.

10
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4.1 Tangent Vectors

From elementary calculus, we can imagine what we mean for a tangent vector. How do we
extend this idea to a manifold? We first have to content with how we think of elements in
R™. On one hand, we usually think of elements in R™ as points. On the other, they can also
be thought of as vectors.

We first consider a so-called geometric tangent vector in Fuclidean space. Given a point
p € R", define the geometric tangent space to R" at p, denoted by R}, as the set
{p} xR" :=={(p,v) | v € R"}. We will write v, instead of (p,v) as a matter of convenience.
Further, define a geometric tangent vector in R" as an element of R}.

A geometric tangent vector provides us with a means of taking the directional derivative
of functions. For any geometric tangent vector v, € R}, we have the map

D,|,: C*(R") — R

given by
d
Dylpf = Dyf(a) = i (p + tv)|i=0,
which takes the directional derivative in the direction of v at the point p. Note that this
operator is linear and satisfies the Leibniz rule.
With the above discussion in mind, we can make the following definition.

Definition 4.1. If p is a point in R", a map
W . C*[R") - R
is called a derivation at p if IV is linear over R and satisfies the Leibniz rule.
Lemma 4.2. Suppose that p € R", W € T,R", f,g € C*(R").
1. If f is a constant function, then W f =0
2. If f(p) = g(p) = 0, then W(fg) = 0.
Proposition 4.3. Let p € R".

1. For each geometric tangent vector v, € Ry, the map D,l, : C°° — R defined above is a
derivation at p.

2. The map v — D,|, is an isomorphism from R} to T,R".

Proof. The fact that D, |, is a derivation follows from the fact that the directional derivative
is linear and abides by the Leibniz rule. To show that the map v — D,|, is an isomorphism,
we first note that it is indeed linear.

Injectivity: To show injectivity, suppose that v, € R} has the property that D,|[, is the
zero derivation. We can write v, as v, = v'e;|, where e; is the standard basis vector, and
taking f to be the j*® coordinate function 27 : R® — R, thought of as a smooth function on
R™, we obtain

. ;0
0 = Dv|p(x]) =0 axz

&' omp = v

11
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and hence v, is the zero function.

Surjectivity: Let w € T,R" be arbitrary. Define v = v'e; such that v* = w(z*). We want
to show that w = D,|,. To show this, let f be any smooth real-values function on R". We
know that we can write f as

fx)=fp)+)

Corollary 4.4. For any p € R", the n deriwations

oy 9

Ox! p,..., dxm |,
defined by

0 _of

oxt pf - Ot (p)

form a basis for T,R™, which therefore has dimension n.

4.2 The Tangent Space at a Point

Let M be a smooth manifold of dimension m. We already defined what a C"° on an open
subset U of M means. This allows us to consider the object C*°(U) which is the collection
of all C"* functions that map

Definition 4.5. For a smooth manifold M and a point p € M, define the tangent space to
M at a point p, denoted by T, M, as the set of all mappings X, : C*°(p) — R that satisfies
the following two conditions:

1. For all o, 6 € R and f,g € C*(p), one has
Xp(af + Bg) = aXp(f) + BXp(9) (linearity)
2. For all f,g € C*(p), one has

Xo(fg) = (XpNg(p) + f(p)(Xp(g))  (Leibniz rule)
with the vector space operations in 7, M defined by

(Xp+ Vo) f = X f + Yo f
(aXp)f = (X, f)

A tangent vector to M at pis any X, € T,M.

Lemma 4.6. Suppose that M is a smooth manifold, p € M, v € T,M, and f,g € C*(M).
Then we have the following:

1. If f is a constant, then vf = 0.
2. If f(p) = g(p) =0, then v(fg) = 0.

12
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4.3 The Differential of a Smooth Map

If M and N are smooth manifolds and F': M — N is a smooth map, for each p € M, define
the map

DFp : TpM — TF(p)N

called a differential of F' at p, as follows. Given v € T,,M, let DF,(v) be the derivation at
F(p) that acts on f € C°°(N) by the rule

DF,(0)(f) = v(f o F).
Note that if f € C*(N), then fo F € C*(M), so the quantity v(f o F') is something that
makes sense. We summarize the above discussion in the following theorem.

Theorem 4.7. Let F : M — N be a smooth map on manifolds M and N. Then, forp € M,
the map F* : C>(F(p)) — C*®(p) given by F*(f) = foF is a homeomorphism of algebra and
induces a dual vector homomorphism DF : T,M — TpuyM defined by DF(X,)f = X,(F*f)

Remark. The homomorphism F, : T,M — Tp) M is often called a differential of F'. The
notation dF', DF, or F’ are other common notations for the differential.

Corollary 4.8. If F' : M — N is a diffeomorphism of M onto an open set U C N and
p€ M, then DF : T,M — Tp) M is an isomorphism onto.

We know that any open subset of a manifold is a manifold of the same dimension. If
(U, ) is a coordinate chart on M, then the coordinate map induces a isomorphism Dy :
TyM — T,,»R" of the tangent space at each point p € U onto T,y M. Additionally, the

inverse map Dy~ maps T,,)R" isomorphically onto 7,M. The images e; = Dy ™" a?ci for
1 =1, ..,n, of the natural basis {%, - %}

4.4 Tangent Bundle

Definition 4.9. Let M be a smooth manifold. We define the tangent bundle as the
following
T™ = | J T,M. (4)

peEM

Let M be a smooth manifold with an atlas ¢. Consider a chart (U, ¢). It follows that

TU = U,y oM —— o(U) x R

|

:{p,vp|p6 UaUpGTPM}

Theorem 4.10. Let M be a smooth manifold and consider the tangent bundle T M. Then,
the following are true.

1. TM 1is a manifold with a canonical smooth structure.
2. The map w: TM — M given by (p, X) — p is a submersion.
3. Ifpe M, then 7' (p) = T,M.

13
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5 Vector Fields

5.1 Basic Definitions

Definition 5.1. Let M smooth manifold. A vector field is a smooth mapping X : M —
T'M such that
ToX = ldM

We call X a section of the tangent bundle given by
D(TM) ={C*(M)>X :M —>TM | moX =idy}
We have the following diagram between the tangent bundle, the manifold, and X € I'(T'M).

TM

X

M

Definition 5.2. Let M be a smooth manifold and X,Y € I'(T'M). We define the Lie
bracket of X and Y as
X,)Y]=XY -YX. (5)

Proposition 5.3. Let X, Y, Z be vector fields on a smooth manifold M. Then the following
hold:

1. [X,Y] is a vector field on M, called the Lie bracket of X and Y.
2 [X,Y] = —[Y, X]
3. [aX +bY, Z] = a[X, Y] + b]Y, Z]
4 X Y), 2]+ (1Y, 20, X] + (12, X), Y] = 0
0. [fX,gY] = fglX. Y]+ fX(g)-Y —gY(f)-X.
Example 5.4. Let M = R. Consider the vector fields X = f(t)% and Y = g(t)% for some

smooth functions f and g. Let h € C*°(R). Then,

X(Y(h)) =

5.2 Geometric Understanding of Vector Fields

Definition 5.5. Let M be a smooth manifold. A one-parameter group diffeomorphism

is a smooth map
y:MxR—-M

such that

1. v : M — M is a diffeomorphism

14
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3. Vst = Vs 0y for s,t € R.

Remark. Let Diff(M) = {f : M — M | f is a diffeomorphism}. Then, the map (R,+) —
(Diff(M), o) given by t — = is a homeomorphism.

Let v be a one-parameter group of diffeomorphism and f € C°(M). Define the map
L: M — R by

L) = (0 (r)).

It follows that L is linear and satisfies the Leibnitz rule. Hence, L is a derivation on M and
there is a corresponding vector field X given by

X,(f) = < F0u(o)

t=0

In local coordinates, for a chart (u, ¢) with p € U, we have

t=0

= aln): I ©(p)

Definition 5.6. Let X be a vector field on a smooth manifold M. We define an integral
curve of X as a smooth map
a:(a,b) — M

d
such that (D;«) (E) = Xa)-

0
Example 5.7. Let M = R? and consider (x,y) coordinates with the vector field X = B
T

Then, on an integral curve a(t) = (x(t),y(t)), we have that

(Dycv) <%) = Cfi_j{% + %%

Matching the corresponding components of the vector field X, we have that following system:
dr _
0y
i 0

which yields the integral curve «(t) = (t + a,b) where (a,b) represent the initial condition of
the integral curve.

15
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Theorem 5.8. Let X be a vector field on a smooth manifold M. For all p € M, there exists
a neighborhood p € U C M, € > 0, and a unique smooth function v : U X (—e€,€) — M such
that

T ,0) = X(1(p,)
7P, 0) = p.

Theorem 5.9. If M is a smooth compact manifold, then there exists an € > 0 such that the
flow is globally defined.

6 Vector Bundles

6.1 Basic Theory

Definition 6.1. Let M be a topological space. A real vector bundle of rank k£ over M
is a topological space E together with a surjective continuous map 7 : £ — M satisfying
the following conditions:

1. For each point p € M, the fiber E, = 7~!(p) over p is endowed with the structure of a
k-dimensional real vector space.

2. For each point p € M, there exists a neighborhood U of p in M and a homeomorphism
® : 7 YU) — U x R¥ (called a local trivialization of E over U), satisfying the
following conditions:

e Tlpod=nm
e for each point ¢ € U, the restriction of ® to F, is a vector space isomorphism
from F, to {¢} x RF = R*,

If M and E are smooth manifolds, 7 is a smooth map, and the local trivializations can be
chosen to be diffeomorphisms, them E is called a smooth vector bundle. In this case, we
call any local trivialization that is a diffeomrophism onto its smooth image a smooth local
trivialization.

On the intersection U NV, the map ¢y o), : (UNV) x R* — (UNV) x R is of the
form (Yy oby!)(z,v) = (x, guy(x)(v)) where gyy is a smooth map from UNV to GL(m,R).

6.2 Examples
1. For a smooth manifold M, the tangent bundle T'M is a vector bundle.

2. The tangent space of S! and S! x R are isomorphic vector bundles.

3. The Mobius band:

16
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7 The Cotangent Bundle

7.1 Covectors
We begin with an introduction to covectors.

Definition 7.1. Let V be a finite dimensional vector space. Define the covector on V
to be a real-valued linear functional on V'; that is, a linear map w : V' — R. The space of
all covectors on V is itself is a vector space under the operations of pointwise addition and
scalar multiplication. It is denoted by V* and called the dual space of V.

We state an important fact about the dual vector space in the finite dimensional case.

Proposition 7.2. Let V be a finite dimensional vector space. Given any basis (E, ..., E,)
for V, let el,....e™ € V* be the covectors defined by

gi(Ej) = (5;'7

where (5? is the Kronecker delta. Then, €', ...,e™ is a basis for the dual space V®. Moreover,

we have that the dimensions of V' and its dual are equal.

Definition 7.3. Suppose that V and W are vector spaces and the map A : V' — W is linear.
Define the linear map A* : W* — V* as the dual map by

(A"w)(v) = w(A(v))
forwe W*and v e V.
Proposition 7.4. The dual map satisfies the following properties:
1. (Ao B)*=B*o A",
2. (Idy)* : V* = V* is the identity map of V*.

We also have the notion of the second dual space of V', denoted by V** = (V*)*. For
each vector space V, there is a natural, basis-independent map £ : V. — V**, defined as
follows. For each vector v € V| define a linear functional £(v) : V* — R by

§(v)(w) = w(v)
for w € V*. We have the following property about finite dimensional dual vector spaces.

Proposition 7.5. For any finite-dimensional vector space V', the map & : V. — V** is an
1somorphism.

7.2 Tangent Covectors on Manifolds

Definition 7.6. Let M be a smooth manifold. For each point p € M, define the cotangent
space at p, denoted by Ty M, to be the dual space of T),M:

T (M) = (T,M)".

Elements of T M are called tangent coverctors at p or just covectors at p.

17
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8 Tensors

We now generalize the idea of linear maps to multilinear ones— that is, those that take several
vectors as inputs and depend linearly on each one separately.

8.1 Multilinear Algebra

In their simplest form, tensors are just real-valued multilinear functions of one or more
variables.

Definition 8.1. Suppose that Vi, ...,V and W are vector spaces. A map F': Vi x---xV, —
W is called multilinear if it is linear as a function of each variable separately when the
other are held fixed: for each 1,

F(vy,..,av; + a0}, ... vp) = aF (v1, ...y U3y oy U) + @' F(vg, ., 0 0.

Let L(Vi, ..., Vi; W) for the set of all multilinear maps from V; x --- x Vi, to W. It is a vector
space under the usual operators of pointwise addition and scalar multiplication:

(F + F')(v1,...,v) = F(vg, ..oy v) + F' (v, .. 0p)

(aF)(vy,...,v) = a(F(v1, ..., 05))

Example 8.2. (Tensor Products of Covectors). Suppose that V' is a vector space and
w,n € V*. Define the function
wn:VxV >R
given by
w @ n(v1,v2) = w(v)n(v2),

where the product on the right is ordinary multiplication of real numbers.

The above example can be generalized to arbitrary real-valued multilinear functions as
follows: let V4, ..., Vi, W1, ..., W, be real vector spaces, and suppose that F' € L(V3, ..., Vi;R)
and G € L(W4,...,W;;R). Define a function

FRG:Vix-- - xVixWx---xW =R
given by
F® Gvy, ., v, w1, ...ywy) = F(vr, ., 05)Gwy, ..oy wy).

It follows from the multilinearity of F' and G that F ® G(vy, .., vk, w1, ..., w;) depends linearly
on each argument.

Proposition 8.3. (A Basis for the Space of Multilinear Functions) Let V1, ...V} be

real vector spaces of dimensions ny, ..., ny, respectively. For each j € {1,...,k}, let (e, ..., e{]j)
be a basis for V; and let (ejl», e e?j) be the corresponding dual basis for V. Then, the set

B={'® - @ |1<i<ny,...1 <ip <ng}

is a basis for L(Vi, ..., Vi;R), which therefore has dimension equal to ny - - - ny.

18
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8.2 Abstract Tensor Products of Vector Spaces

The result of the previous section shows that the vector space of multilinear functions
L(V4,...,Vi;R) can be viewed as the set of all linear combinations of objects of the form
where w! ® - - - ® w* where w', ..., w* are covectors.

We need to make sense of formal linear combinations. Let S nlge a set. We can think

of formal linear combinations of S as an expression of the form Zaixi where q,; are real
i=1
numbers and z; are elements of S. We make the following definition:

Definition 8.4. For any set S, a formal linear combination of elements of S is a
function f : S — R such that f(s) = 0 for all but finitely many s € S. The free real
variable vector space on S, denoted by F'(5), is the set of all formal linear combinations
of elements of S. Under p

Proposition 8.5. The Characteristic Property of the Free Vector Space For any
set S and any vector space W, every map A : S — W has a unique extension to a linear
map A: F(S) — W.

Proposition 8.6. (The Characteristic Property of the Tensor Product Space)
Let U, V,W be finite dimensional vector spaces and let H : V x W — U be a bilinear map.
Consider the map ¢ : V xXW — V @ W given by

p(v,w) =vQw.
Then, there exists a unique function h = such that the following diagram commutes:

VeWw

d

VxU 25U

Proposition 8.7. (Basic Properties of Tensor Products) Let U VW be a finite
dimensional vector spaces. Then the following hold:

LVIW2WaV
2.VeWelU)2(VeW)eU

3. Let L : V* x W — Hom(V,W) where (f,w) — f(v)-w. Then the induced map
C:V*@W — Hom(V,W) is an isomorphism.

4. dim(V @ W) = dim(V) - dim(W).

5. If (e1, ..., e,) is a basis for V and (ei, ...,em) is a basis for W, then {e; ® f;} is a basis
for Ve Ww.
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Definition 8.8. Let V be a finite-dimensional vector space. We define the tensor space

V,.s of type (1, s) associated with V' to be the vector space

VT®(V*)5 ;:I/@...@\/L@l/*@...@vt
T copies s CB;)ies

for r, s > 0. We can now define a tensor of a vector space V' as

T(V)=> Vo= {T = iT
=1

r,s>0

TTj,Sj E VI‘J.S]}

(6)

(7)

T; is a homogenous tensor of degree (r;,s;). T(V) is non-commutative, associative, and a

graded algebra. We define the operation as ® given by

URUW=U® QU QW R QWp, QU] V- RV, QU RV -+ @ W,

8.3 Symmetric and Alternation Tensors

Definition 8.9. Let V' be a finite-dimensional vector space. A covariant k-tensor o on V' is
said to be symmetric if its value is unchanged by interchanging any pair of arguments

(U1, oy Uiy ooy Uy ooy V) = (U1, oy Uy ooy Uy ey V)

whenever 1 <1 < 5 < k.

9 Differential Forms

9.1 Exterior Algebra

Definition 9.1. Let V be a finite dimensional vector space. Define the space C'(V) as

C(V):=> Vo

k>0

In other words, C(V') is the sum of vec

Definition 9.2. Let V and W be finite-dimensional vector spaces. Amap H : Vx---xV —

H is said to be an alternating map if

1. H is multilinear

2. H(Ug(l), ...7UJ(;€)) = sign(a) . H(Ul, ceey Ug(k))

Proposition 9.3. (Properties of the Wedge Product) Let Vi and V5 be finite dimen-

sional vector spaces. Then

1. VinNVo==Vo AV}
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2. Fora € A.(V) and 5 € Ay(V), we have a A = (—1)" B N«
3. v A Ao, =0 if v, =v; for some i # j.

4. If (e1,...,en) is a basis for V, then (e;; N---e; ) with 1 < iy <iy < --- <ix <nisa
basis for Ag(V).

5. dim(Ay(V)) = (Z)

6. (Universal Property) Let H : V x --- x V. — W be an alternating map. Then
there exists a unique map h : A, (V') = W such that H = h o p. Moreover, (Ax(V), ¢)
is unique if there exists a vector space X and a map ¢ such that (X, Q) satisfies the

universal property, then there exists f : X — Ap(V) which is an isomorphism such
that o = fop and h=ho f.

H:Vx---xV s w

e

Ar(V) ~

s

X

9.2 The Algebra of Alternating Tensors

Let V be a finite-dimensional real vector space. Recall that the covariant k-tensor on V is
said to be alternating if its value changes sign whenever two arguments are interchanged,
or equivalently if any permutation of the arguments causes its value to be multiplied by the
sign of the permutation. Alternating covariant k-tensors are also called exterior forms or
k-covectors.

Definition 9.4. The vector space of all k-covectors on V is denoted by A*(V*).
This lemma gives two more characterizations of alternating tensors.

Lemma 9.5. Let o be a covariant k-tensor on a finite-dimensional vector space V. The
following are equivalent:

1. « s alternating
2. a(vy, ...,vx) = 0 whenever the k-tuple (vy, ...,v,) is linearly dependent
3. « gives the value zero whenever two of its arguments are equal.

For computations with alternating tensors, we adopt the following notation. Given a
positive integer k. an ordered k—tuple I = (i1, ...,1;) of positive integers is called a multi-
index of length k. If
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9.3 The Wedge Product

We want to define a product operation for alternating tensors.

Definition 9.6. (Wedge Product). Let V be a finite-dimensional vector space. Given w €
A*(V*) and n € AY(V*), we define the wedge product to be the following (k + [)—covector:

(k+1)!
kN

Proposition 9.7. (Properties of the Wedge Product). Let V be a finite-dimensional
vector space and consider w,w',n,n and £ be multicovectors on V. Then, we have the
following properties:

wAnN = Alt(w @ ). (8)

1. Bilinearity: For a,a’ € R,

(aw +d'W')An=alwAn)+dW A7)
nA (aw+ dw') =a(n Aw) +d'(n Aw')

2. Associativity:
wA (A =(wAn)NE

3. Anticommutatitivity: For w € A*(V*) and n € AY(V™),
wAn=(—1)"nAw

9.4 Exterior Derivatives

We want to generalize the differential operator on smooth forms, called the exterior deriva-
tive. To define the exterior derivative on Euclidean space, it is straightforward: given
w € QF(R") such that w = » wydz’, we define dw to be the following (k + 1)-form

I

d (ijd:c1> = Zdw; A de,
I I

where dw; is the differential of the function w;. This is flushed out as

d (Zw[dx“ /\---/\dxik> Zz%dx N NN L
I

Example 9.8. Let f € Q°(R) = C*(R). The formula above reduces to

of

d 'L
oxt

df =
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Example 9.9. Let w € Q'(R) be given by w = w;dz’. Tt follows that

wzdx Z 8% dx A da?

. . Ow: . .
. ] ) J 7

1<j i>]
8Wj &ui i j
— Z (8$i — aaﬂ) dz' N dx
1<J

Note that this corresponds to taking the curl of the corresponding vector field X, = wi%.
Proposition 9.10. (Properties of the Exterior Derivative on R™).
1. d is linear over R.
2. If w e Q¥(U) and n € QYU) where U C R is open, then
dwAn) =dwAn+ (1) w A dn.

3. dod=0.
4. d commutes with pullbacks.
The above properties allow for the application of the exterior derivative to manifolds.

Theorem 9.11. (The Exterior Differentiation Theorem) There exists a unique ex-
tension d : QF(M) — QFL(M) such that the following properties hold

1. d is linear over R.
2. If w e QF(M) and n € QY (M), then

dwAn) =dwAn+ (=1)Fw Adn.

8. dod=0.
4. For f € QM) = C>=(M), df is the differential of f, given by df (X) = X f.

Proposition 9.12. Let M and N be smooth manifolds and F' : M — N be a smooth map.
Then,

d(F*(w)) = F*(dw) (9)
for any w € Q*(N).
Proof. Suppose first that w = f € Q°(N). Then F*(f) = fo F € C®(M). It follows that
d(F*(f)) = d(f o F). So, if v € T,M, then d(F*(f)),v = d(f o F),(v) = df (DpF(x)). We
also calculate F*(df),(v) = dfp@)(DpF (v)). Hence, we have shown the result for a zero form.
We move to the general case. Suppose that w € QF(N). It is enough to argue in the manner
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above as d and F* are linear. Since, d(-), is determined by the values in a neighborhood
of p, we can prove the result in a local chart. Consider the local chart (U, ) around F(p).
Accordingly, we have

w\U:ZaI~dxil/\~~/\dxik.
I

We can calculate
Fr(w) =Y F*(ap)F*(dw;,) A+ N F*(dxy,)
I

and hence

d(F*(w)) = > d(F*(ar) - d(F*zi,) A+ Ad(F ;)
= " d(F (an) Ad(F i) A Ad(F ;)
= 3" F'(dar) A F*(dai) A+ A F*(day,)

= F*(dw).

10 Lie Derivatives

We have already covered how to make sense of directional derivatives of real-valued functions
on a manifold. Indeed, a tangent vector v € T),M is by definition an operator that acts on
a smooth function f to give a number v f that we interpret as a directional derivative of f
at p.

What about the directional derivative of a vector field? Let’s first consider how this
would play out in Euclidean space. It makes sense to define the directional derivative of a
smooth vector field X in the direction of a vector v € T,R". It is the vector

d Xpirw — X
Dy X(p) = —| Xpppo = lim —22__P

dt{,_, t—0 t

We can easily calculate the directional derivative by applying D, to each component of W
separately:

0

-1
axp

D,W (p) = D,W*(p)

This definition is hard to generalize, however. The reason is that we are implicitly using
the fact that R" is a vector space. That is, the tangent vectors W4, and W), can both be
viewed as elements of R”.
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10.1 Lie Derivatives on Vector Fields

Suppose we try to generalize this a manifold M. To begin, we make the replacement of
p + tv by a curve (t) that starts at the point p and whose initial velocity is v. However,
this substitution still yields a fundamental error; the vectors W, and W, belong to
two different spaces: T, M and T’ )M, respectively. This was negated in the case of R"
because there is a canonical identification of each tangent space with R"™ itself; but, on a
generic manifold there is no such identification. Thus, there is no coordinate independent
way

We fix this problem if we replace the vector v € T,M with a vector field X €, so we can
use the flow of X to push back values of W back to p and then differentiate. We can now
make the following definition.

Definition 10.1. Suppose that M is a smooth manifold, X is a smooth vector field on M,
and F'is the flow of X. For any smooth vector field Y on M, define a rough vector field on
M, denoted by the ZxY and call the Lie derivative of Y with respect to X, by

d
— % pd(F_t)Ft(p) (YFt(P))

i W) (Vi) — Yy
t—0 t

(XXW)p

Y

provided the derivative exists. For small ¢ # 0, at least the difference quotient makes
sense: F; is defined in a neighborhood of p, and F_; is the inverse of F};, so the objects
d(F_¢)pp)(Yr,(p) and Y, are elements of the tangent space T,M.
Example 10.2. Let M = R? and consider the vector fields
0 0 0
X =—y— — Y =—.
y@a: + xay ox

Let p = (z,y) and lets calculate the Lie derivative ZxY. Using the above definition, we

need to calculate the flow of X. It follows that we have the system
dr
at ~ 7
dy
Pr—— x
dt

(2(0),5(0)) = (2,9).
We can hence write an equation for z(t) as
2'(t) +x(t) =0

which has the solution of
x(t) = x cos(t) + ysin(t).

We get that the flow Fi(x,y) is given by

e = (Sl 0 (1)
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0
We have that Y, ) = %’Ft(p)

The above definition can be rather tedious. We present an alternate way to calculate Lie
derivatives. First, we need the following lemma on the aforementioned Lie brackets.

Lemma 10.3. Let X,Y be smooth vector fields on a manifold M with or without bound-
ary,and let X = X* a?gi and Y = Yj% in terms of the smooth local coordinates (x*) for M.
Then

N E 0x 0 , 0
! - )(J - )~ — XY] - YX] .

Ox? Ozt ) O’ ( ) O’
Proof. Because [X,Y] is a smooth vector field, it suffices to check this on a smooth chart.

We have

(X, Y] =(X

-0 . Of -9, 0f
— - 7 -J N Jj__ 7
X Y)r =X ot ¥ axj) v O X 8:51')
OV Of i O JOXTOf i Of
=X Oxt Oxd + A Oxi0xI Y Oxd Oxi o230z’

YO0 o
=X oxt OxJ Y o0xd Ozt

]

Lemma 10.4. Let V' be a smooth vector-field on a smooth manifold M, and let p € M be a
reqular point of V.. There exists smooth coordinates (s') on some neighborhood of p in which

V' has the coordinate representation %.

Theorem 10.5. If M is a smooth manifold and X1, Xs are vector fields, then Lx, Xo =
(X1, Xo].

Proof. Suppose that V and W are vector fields of a smooth manifold M. Define the set
R(X,) as the set of points p € M such that p € M such that X;(p) # 0. Note that R(V) is
open in M by continuity, and its closure is the support of V. We want to show that

(L W)y = [V, W],

for all p € M by considering the following three cases.

Case 1: p € R(V). In this case, we can choose smooth coordinates (u') on a neighborhood
of p in which V' has the coordinate representation V' = 8%1 by the lemma. Therefore, the
denote the flow of V by Fy(u) = (u'+¢,u?, ..., u"). Since F_; is just a translation, d(F_) g,z
is just the identity at every point x € M. Thus, for any v € U,

. 0
A(F_t) i) W) = d(F-t) pyoy (W7 (u' + 8, u™) =

out )

Fi(u)

0

o J(s,1 ny_~
=W (u +t,...,u )8uj

u
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Therefore, by the definition of Lie derivative, we have

0 , 0 oW 0
— 7 1 ny_~ _ 1 ny_—~
(L W), B t:oW (u —|—t,...,u)auju S (u,...,u)auj ;
However, using the lemma we see that
- , 0 "L oW ny O
VW) = SO W )gn) =3 S g
u j= u j= u

Since V = 3%1.
Case 2: Let p € supp(V'), Because the supp(V') is the closure of R(V), there is a sequence
(p;) that converges to p. By case one, we know that (£, W),, = [V, W],, for every term in
the sequence. Thus,

(gVW)p = lim (XVW)pi = lim [V, W]pi =V, W]p

1—00 1—00

Case 3: p € M —supp(V). In this case, V = 0 in a neighborhood of p. On one hand, this
implies that the flow is equal to the identity map in a neighborhood of p for all £. So,

d d
(LxW)y = — pd(F—t)Fz(m(WFt(p)) == pr =0
since W), does not depend on ¢. Also, [V, W] ‘p is also zero since V' (p) = 0. O

This theorem provides us with a geometric interpretation of the Lie bracket of two vector
fields: it is the directional derivative of the second vector field along the flow of the first. We
now present the following properties of the Lie derivative.

Corollary 10.6. Suppose that M is a smooth manifold and V, W, X are smooth vector fields
on M. It follows that

1. BW = —LyV
2. LV, X] = LW, X] + [W, % X]

3. LywX = LrLwX — Ly L X

4. If g € C=(M), then Ly (gW) = (Vo)W + g AW

10.2 Lie Derivatives on Forms

We now consider how to calculate Lie derivatives of differential forms over vector fields.
Before we do so, we need to understand how vector fields and differential forms interact with
each other.
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Definition 10.7. Let M be a smooth manifold and X be a vector field. We define the
interior product via the map

v QF(M) — QF (M)
which sends k forms to k — 1 forms via the property
(txw) (X1, .oy Xg) = w(X, X1, ooy Xi—1)
for any vector fields X, ..., X} on M.

We briefly mention two important properties of the interior product in the following
proposition.

Proposition 10.8. (Properties of v): Let M be a smooth manifold. For vector fields X
and Y and differential forms w, o, 3 € Q¥(M), we have

1. ixtyw = —tlylxw
2. the Leibniz rule: 1x(a A B) = (txa) A B+ (=1)Fa A (1xf).
We begin with a formal definition as we did for Lie derivatives of vector fields.
Definition 10.9. Let M be a smooth manifold. The Lie derivative of a differential form

w € QF(M) respect to a vector field X is defined by

Fjw—
Lxw =—| Fjw=Ilim v

dt|,_, t—0 t ’

(10)

where F; is the local flow generated by the vector field X.

Next, we provide a useful identity for Lie derivatives and wedge products of differential
forms.

Proposition 10.10. Suppose that M is a smooth manifold, X € and w,n € Q*(M). Then,
Lx(wAn) = (ZLxw) An+w A (Lxn)
We now provide the main result for Lie derivatives on differential forms.

Theorem 10.11. (Cartan’s Formula) On a manifold M, for any smooth vector field X
and any smooth differential form w,

wa =X (1].)

11 Orientation

We now discuss the topic of orientation. In the case of a line, the orientation is simply which
direction in which you traverse it. We need to extend this idea to a manifold, which will be
important in the theory of integration on manifolds.
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11.1 Orientations of Vector Spaces

We begin with the orientations of vector spaces. The simplest vector spaces are R™. In the
case of R!, we choose a basis that points to the right (the positive direction). A similar
choice is made for R?. A natural family of preferred ordered bases for R? consists of those
for which the rotation from the first vector to the second vector is in the counterclockwise
direction. Similarly, for R3, we use the so-called "right-hand rule” to find the direction of
the third basis vector.

These methods all have one thing in common: the bases are the ones whose transition
matrices from the standard basis have positive determinants. We can generalize to the
following definition:

Definition 11.1. Let V be a real-valued vector space of dimension n > 1. We say that two
ordered bases (ei,...,e,) and (éy,...,&,) for V are consistently oriented if the transition
matrix defined by A

e; = Bjé;
has a positive determinant.

Definition 11.2. For a vector space V' whose dimension is n > 1, we define an orientation
for V as an equivalence class of ordered bases.

There is an important connection between orientations and alternating tensors.

Proposition 11.3. Let V' be a vector space of dimension n. FEach nonzero element w €
A™(V*) determines and orientation O, of V' as follows: if n > 1, then O, is the set of
ordered bases (e)

11.2 Orientations of Manifolds

Definition 11.4. Let M be a smooth manifold. We define the pointwise orientation of
M to be a choice of orientation of each tangent space.

Pointwise orientation is missing some important relations about how the orientations of
nearby points relate to each other. We would like there to be a relationship between the
orientations and the smooth structure of the manifold.

Definition 11.5. Let M be a smooth manifold of dimension n endowed with some pointwise
orientation. If Fj; is a local frame of the tangent space of M, we say that F; is positively
oriented if (F; R En|p) is a positively oriented basis for 7, M. Similarly, we say that we

say that E; is negatively oriented if (£

p7 e En}p) is a negatively oriented basis for T, M.
A pointwise orientation is said to be continuous if every point of M is in the domain of
an oriented local frame. An orientation of M is a continuous pointwise orientation. An
oriented manifold is an ordered pair (M, Q) where M is an oritentable smooth manifold

and O is a choice of orientation for M.

Example 11.6. We consider a simple example. If M is a zero dimensional manifold, then
an orientation on M is a choice of 41 or —1 attached to each of its end points.
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12 Integration

Our goal is to develop a theory of integration over manifolds. Since we study manifolds by
considering charts that live on R", we begin with a review of Riemann integration on R”

12.1 Riemann Integration on R”

Let D C R™ and f: A — R be smooth such that A C R". For D C A, define the Riemann
integral as

k1 kn
/D oo = fim 3230 (6] B (12)

in=1

We also have the change of coordinates theorem.

Theorem 12.1. Let

12.2 Integration of Differential Forms

On R", consider the standard coordinates (ey, ...,e,). Then, de; A - - - A de, gives a vector

bundle isomorphism:
Q"(R") - R™" x R.

Definition 12.2. Let D C R be the domain of integration and w € Q™*(R™). Then, we define
the integral of w over the domain D as

/w::/adel/\---/\den. (13)
D D

Proposition 12.3. Let o : V — A D D be a diffeomorphism. Then,

/@ S /e

Proof. Let w € Q"(A). By definition, there exists a« € C°°(M) such that w = a de; A---Ade,,.
It follows

for any w € Q"(A).

P (w) = ¢ (a) - (der) A - - AgT(den)

= (@ o) - det (g%) dey A - -+ Nde,
€j

and hence

/ 0" (w) :/ (o ) det (%> dey A\ - -+ Nde,
/7 1(D) o 1(D) 0ej
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There are now two cases: if det Opi > 0 or det Opi < 0. If det Opi > (0, we can
aej 8ej 8ej

use the change of variables formula. Otherwise, we have that

O Dipi
(o p)det (—) dey - - - de, = —/ (o) |det (—) dey - - - de,,
\/‘Pl(D) 86] @*I(D) aej
_ / w
D
where the last equality above follows from the change of coordinates theorem. O

Proposition 12.4. (Properties of Integrals of Forms). Suppose that M and N are

non-empty oriented smooth n-manifolds and w and n are compactly supported n- forms on
M.

1. Linearity: If a,b € R, then

/aw+bn:a/w+b/n
M M M

2. Orientation Reversal: If —M denotes M with the opposite orientation, then

L=l

3. Posttivity: If w is a positively oriented orientation form, then

/w>0
M

12.3 Integration on Manifolds

Definition 12.5. Let M be a smooth oriented n— manifold that is compact. Let (U;, ;)%
be an oriented atlas on M and (f;) be a subordinate partition of unity. Define

o= Z / o B )

Proposition 12.6. The definition above for the integral on manifolds is independent of the
atlas or the partition of unity.

Definition 12.7. Let D C M. We say that D is a regular domain if, for each point in
M, one of the following holds:

1. there exists an open neighborhood U of p such that U C D

2. there exists an open neighborhood U of p such that U € M\ D
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3. there exists a chart (U, ) that contains p such that p(U) NH = (U N D), where H
is the upper half plane in n dimensions.

Remark. For a smooth n dimensional manifold M, the boundary OM has dimension n — 1.

Theorem 12.8. Stokes’ Theorem: Let M be a smooth n-dimensional orientable manifold,
D C M be a reqular domain, and w be an n — 1-form on M or an open set containing D.

Then,
/ w= / dw (14)
oD D

We first discuss the induced orientation on the boundary M. The standard orientation
0
ox,,

oriented basis for the tangent space T,R". Then, M is oriented if and only if, for each point

0 0

, we have that [ —| ,..., —
by W v (8951 » ox,, »

is an oriented basis for OM if (n,V4,...,V},) is an oriented basis for the tangent space T),M.
We claim that this is well-defined and independent of the choices.

on R™ is given by the coordinates (z1, ..., z,), or equivalently <8_’ s is a positively
Zq

) is an oriented basis for T,,M. We say that (V1,...,V,,_1)

12.3.1 Examples of Stokes’ Theorem

We now provide some useful examples of how to apply Stokes” Theorem before we prove the
theorem. These formulae will be familiar from a class in vector analysis.

Example 12.9. Let M = R and D = [a,b] where b > a. It follows that 0D = {a,b}, a
0—dimension manifold. We note that the orientation of 0D comes down to a choice in the
sign. Indeed, a basis for the tangent space T,R is given by 9/0xz. We can now apply Stokes’

Theorem. It follows that
of
df = / —dx
/[a,b] 0,0 0%
o /

= f(x)dx

[a,b]

and picking the positive orientation of 0D, we have

8Df = +f(a) = f(b).

Combining yields
fl(@) dz = f(a) — f(b),

[a,b]

the Fundamental Theorem of Calculus.
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Example 12.10. Let M = R? and w € Q'(R?). Then, w has the form w = f(z,y)dr +
g(z,y)dy for f,g € C>°(R?). We calculate the exterior derivative of w as

dw = d(f(z,y)dz + g(z,y)dy)

_of of 9g 9g

= 92 c1lx/\clzzc+a dy/\dx+axdm/\dx—l—aydy/\dx
_of dg
= o ——dy /\dx—l—a—dx/\dy

_ (99 9of

_<8x ay)d:c/\dy

Substituting into Stokes’ Theorem yields

// (% - a_y) dz A dy = . f(@,y)de + g(z,y)dy,

which is known as Green’s Theorem.

Example 12.11. Let M? C R? and w € Q'(R?). Then w has the form w = f(z,y, z)dzr +
g(z,y,2)dy + h(z,y, z)dz for f,g,h € C>(R?). We calculate the exterior derivative of w as

dw = d (f (. y, 2)dx + g(x,y, 2)dy + h(x,y, 2)dz)

of of dg dg oh oh
= —dyNdr+ ——dzANdx+ ——dr Ndz+ ——dz Ndy + —dzx Ndz+ —dy Nd
ay 1T x+az z N\ x+ax SN Z+8z z N\ y+a T A Z+8y yNdz
(99 Of of  0Oh oh  dg
_(8x ay)dx/\dy—i—(@z ax>dz/\dx+(ay 35, dy N\ dz

Substituting into Stokes” Theorem yields

// — — — |dx ANdy + G_f_@ dz N\ dx + %—@ dy N dz
dy 0z Ox dy z

f(x,y, z)dx + g(z,y, z)dy + h(z,y, 2)dz
oD

which is known as Stokes’ Theorem.

Example 12.12. Let M and w € Q*(R3). Then w has the form w = f(z,y,z)dx A dy +
g(z,y, 2)dy Ndz+h(z,y, z)dz Ndz for f,g,h € C=(R?). We calculate the exterior derivative
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of w as

dw =d(f(z,y,z)dz Ndy + g(x,y, 2)dy A dz + h(z,y, z)dz A dx)

of of of
= | ==dr + ——dy + =—d dx N d
(8:1: x+8y y+8z x>/\ vhay

dg dg Jg
+ (axda:—l— ayaly~|— azdx) ANdy A dz

oh oh oh
+ (%d:v + (‘3_ydy + de) ANdz N dz

h
O o ndendy+ 2de ndo ndy + 2z e A dy
0z ox dy

of g oh
<%+8—y+%>da¢/\dy/\dz

Substituting into Stokes” Theorem yields

of g Oh
/M<a—x+a—y+&>dl’/\dy/\dz

= flz,y,2)dx Ndy + g(x,y, z)dy AN dz + h(x,y, z)dz A dx
oM

which is known as the divergence theorem.

Remark. In a vector calculus course, these theorems are commonly written using the dif-
ferential operators curl and divergence. Although these quantities seem foreign at first, we
have shown that they are nothing more than the exterior derivatives of one and two forms
in R3.

12.3.2 Proof of Stokes’ Theorem

We now prove Stokes” Theorem in its most general form. Before we do so, we need to prove
a more specific result: Stokes” Theorem on p-chains. Let o be a p-chain and w be a p-form.

We can write o = Z c;0;, where o; is a singular p-simplex. We define the integral of w over

/aw:;ci/aiw:;ci/maf(w). (15)

We now state Stokes’ Theorem over a p-chain.

o as

Theorem 12.13. Let M be a compact smooth manifold of dimension n, w € QP~Y(M), and
o be a p-chain. Then we have
/dw = / w (16)
o do

Proof. Let o be a p-chain. We can decompose ¢ into singular p-simplices: o = Z c;o;. As

the integral is linear, it is enough to show the result for an arbitrary singular p-simplex, o;.
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Case 1: p=1: Let o be a singular 1-simplex and w € Q°(M). Then, w = f € C®(M).
We have that o : [0,1] = M, 9o = o(1) — 0(0), A® = {0}, and OA' = {0} U {1}. Tt follows
that

/adf:/old(foa):foa(l)—foa(O)

where the last equality follows from the fundamental theorem of calculus in one-dimension.
We also calculate that

f=foo()— foo(o).
oo

Hence, we have the result for p = 1.
Case 2: p>1: Let w € QP71 (M). As o*(w) € QP7Y(AP) has a basis, we can use the
standard basis to write

p—1
o*(w) :Zfl dey A== Ndzj; A\ --- Ndzy.
i=1

It follows that

= / d(c*w)

AP
p—1
fi .
= Z( —fdxj>/\d:clA~~/\d:ch~--/\d:cp

i=1

1 0f;
. i—1 1
= /M % (—1) _(‘3xidxl A~ Ndx,

. of;
= Z(—l)’_l /Ap 85- dxy - - -dz,

We now consider / w and see that O
oo

Proof. Consider o, : A™ — M a regular domain with respect to D, oriented n—simplices
and V, diffeomorphism. Note that V, extends to a C'"*° function in a neighborhood of A"
in R™. Then, A" has one of the following two forms:

1. 0,(A™) Cint(D): Type 1
2.

For any p € D, then there exists a diffeomorphism V,, of either type 1 (if p € int(D)) or
type 2 (if p € OD) such that p € g,(A").

Let {(Uy, pa)} be a covering of D such that either U, C 0,(A"™) where o, is of type 1
or Uz Nog(A™) for o of type 2. The compactness of M implies that there exists a finite
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subcovering. Accordingly, let {f;} be a subordinate partition of unity. It follows that we can

write /D = Z /D d(fiw).

As supp(d(fiw)) C o;(A™), we have

[ o= > / ) =3 / )

where the last equality follows from Stokes’ Theorem on simplices. We now have two cases.
If 0; is of type 1, then fi’%_ = 0. If 0; is of type 2, then the only terms on the n*® face play
a role. So, it follows that

Z/aa d(fiw) = Z(—l)”/ (0i0 K'Y (fiw)

n—1
i A

= Z(—l)”/ fi(oio K" - (070 K ') 'w

. n—1
i A

13 DeRham Cohomology

Definition 13.1. Let M be a smooth manifold. Consider w € QP(M). If dw = 0, we say
that w is closed.

Definition 13.2. Let M be a smooth manifold. The exterior derivative is a map d :
QP(M) — QP (M), the image and kernel are linear subspaces. Define the following spaces:

ZP(M) = Ker (d) = {closed p-forms on M} BP(M) = Im(d) = {exact p-forms on M }.

Definition 13.3. Define the de Rham cohomology group of degree to be the quotient
vector space

Z0(M)
ngR(M) = BP(M) (17>
Example 13.4. Let M = S*. Then,
0 p=>2
HY ,=¢(R p=1
R p=
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Proof. Case p =0: O]

~

Proposition 13.5. Let M be a compact, connected, oriented n—manifold. Then HY (M)
R.

Proof. Let a € Q(M). As M is an oriented manifold, there exists v € 2"(M) such that
on a local chart U which is compatible with the orientation, v|y = f dzy A -+ A dx,, such

that f > 0. It follows that / v = Z/ w; fidxy N\ --- N dx, > 0. Define the function
M i=1 7 eUi)

Oél—>/Oé.
M

From above, we showed that F'is a surjective linear map. Let o € QP(M) be exact. Then,

F:Q"(M) — R be given by

there exists 7 € such that o = dn. It follows that / o= = 0. Hence, the set of exact
M oM .

forms lives in the kernel of F'. Moreover, F induces a linear surjective map F : H}. 5(M) — R.

O

Example 13.6. Let M = R? and choose a coordinate system (z,y). Consider the standard
volume form on R? given by w = dx A dy. We can write this as d(zdy), hence w is exact.
We can switch to polar coordinates by

r=rcos(l) = dx=cos(f)dr—rsin(f)dd
y=rsin(d) = dy=sin(f)dr + rcos(0)db.

We can then rewrite w as

dx N dy = rdr A db

Theorem 13.7. (Homology Invariance) Let M and N be a smooth manifolds and con-
sider the map F : M x (—€,1 4 €) — N which is smooth and let Fy : M — N be such that
Fy(x) = F(x,t). Then the induced map on the cohomology

Ft* : ngR(N) - Hcll)eR<M)
satisfies the property that Fy = FY.
Corollary 13.8. HY ,(R") =0 forp > 1.

Proof. Let F : R™ x [0,1] — R" be given by F(z,t) =t-x. Let [a] € HY 5(R"). It follows
that [o] = [F} ()] = [F§(a)] = 0. O

Corollary 13.9. For a smooth manifold M, we have HY, (M x R™) = HY (M) for p > 1.

Corollary 13.10.

n R p=0,n
ngR(S):{O p#on
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Proof. For the case p = 0, S™ is connected. From Proposition ??, H) ,(S") = R. Similarly,
if p = n, S™ is connected, compact, and orientable. Again, Proposition 7?7 yields that
ngR(Sn) =R.

Consider 8™ = U UV where U and V are the coresponding stereographic projections: U =
S"\{N} and V = S™\{S}. We have that U,V = R". Let a be a closed one-form. Then,
aly is exact and hence there exists f € C°°(U) such that a|y = df. Similarly, a|y is exact
and hence there exists g € C*°(V) such that a|y = dg. On the intersection U NV, we have
dg = df where UNV =R"\{p} = 5" ! x (0,00). Then, d(f — g) = 0 which provides that
f—g = C, where C is a constant. Define the map f : S” — R such that f(z) = f(x) if
z €U and f(z) = g(z) +cif € V. Then we have that df = df when z € U and df = dg
when z € V. Tt follows that df = a.

For 1 < p < n, we use induction on n. For n = 1, we have H] ,(S') = R. As above,
consider S" = U UV where U NV = R"\{p} = S"! x (0,00) and hence H?(U N V) =
HP(S"™ 1) =0if1 < p<n-—1 Letw € Q(S") be a closed form, As U,V = R", there
exist o, B € QY(U or V) such that w|y = d(a) and w|y = df. Hence, we have that da = dj
which yields d(a — 8) = 0. Tt follows that o — 8 € QP(S" ' x R). As H2 (S" ' x R) = 0,
then a — 8 =dn forn € Q" 2(UNV). Let U C U and V' C V be open subsets such that
U'NnV' = S"1 x (-2 2). Next, let ¢ be a bump function on R such that supp(¢) C (—2,2)
and ¢|(—11) = 1. Let 77 = ¢ -7 be the extension of ¢, on S™ and U c U and V C V' be such
that U NV 2§71 x (=1,1). Consider & = a — d(g,)|g O

13.1 Mayor-Viatoris Sequence for the DeRham Cogomology
Definition 13.11. A sequence

0sASBS oS0

is exact if Im(«) = Ker(3). At A, «vis injective; at B, [ is surjective; and at C, B/a(A) = C.
For vector spaces: B = A @ C'. This idea is generalized to a long sequence when

cee = Ak f—k> Ak+1 fk—+1> Ak+2 — ...
such that Im(fy) = Ker(fy=1) C Axs1.

Theorem 13.12. Let M be a smooth manifold and U and V be such that M = U UV.
Then, there exists a long exact sequence

oo HEA DS gl e HE (V) I HE XU NV) S HE (M) — -

13.2 The deRham Theorem

Theorem 13.13. deRham Theorem Let M be a smooth compact manifold , then the map
Hg, (M) — (Hy(M,R))"

MH/UM

where o is a k—chain given by o = a;o; such that o, : A¥ — M is an isomorphism.

given by
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Consequences of the deRham theorem
1. H% (M) is a finite dimensional vector space.

2. If there exists a basis {o1,...,0,} of Hi(M;R), then the cohomology class can be

identified by evaluating / W, ..., | w for some w such that a = [w].

o1 On

13.3 Poincaré Duality

Let M be a compact oriented n-dimensional smooth manifold. Then, there exists a natural
isomorphism
k —k
HdeR(M) — H(?eR (M)

associated to the non-singular pairing: ([w], [o]) = [,; wA«. Here, the inner product is given
by
<" > : ngR(M) X ngR(M) — (Hl?e_Rk(M)) = HZIL&_Rk(M)

In local coordinates, consider the k—form w = f dz'A- - -Adx* This construction is coordinate
dependent. To have a global construction, we need to introduce a new operator. Consider
the following inner product defined by

(), T,M x T,M — R,

This naturally induces an oriented orthonormal basis: {ej, ...,e,}. We can consider its dual
basis: {dey, ..., de, } of the cotangent space Ty M where de; = de;, A --- A de;, of A(T;M).
We call the above dual basis the standard volume form compatible with orientation and
independent of basis.
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