
Math 1301

Series and Convergence Tests

1 Series

A series is simply the sum of a sequence of numbers such as

1 + 2 + 3 + 4 + 5

or
log(2) + log(4) + log(6).

The examples above constitute finite series because there are a finite number of terms. In
this class, we are interested in infinite series: a sum of an infinite amount of numbers. You
should think of the connection between a sequence and a series as such: a series adds all the
numbers in a sequence. In mathematics, we use the Greek letter Σ to denote a series. For a
given sequence {an}, we denote the corresponding series as

∞∑
n=1

an := a1 + a2 + a3 + a4 + ...,

where := denotes a definition. We call the the number n that appears below Σ to be the
index of the sum.

2 Convergence Tests

In this class, there are seven convergence tests you must know: the divergence test, the
integral test, the direct comparison test, the limit comparison test, the alternating series
test, the ratio test, and the root test. Knowing when to use each of the tests and the precise
statements can be difficult to remember. Let’s first go through each of the tests and state
when we should use them.

1. The Divergence Test: This test ONLY tells you if the series diverges. It does NOT
tell you if the series converges. The statement of the divergence test is:

For a series
∞∑
n=1

an, if lim
n→∞

an ̸= 0, then the series diverges.

The converse of the divergence statement is not true. To convince yourself, consider

the series
∞∑
n=1

1

n
. It is clear that the sequence

1

n
goes to 0 as n → ∞. However, we

know that this sum does not converge from the p-series test (or the integral test). If
you are ever unsure what to do and you suspect that a series diverges, this should be
the first test you try.
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2. The Integral Test: This test is used when you an looks like something you can inte-

grate (examples:
1

n ln(n)
or

1

n2 + 1
). The statement of the test is:

Suppose that for a series
∞∑
n=1

an you write an = f(n) and f(x) satifies the

following properties on the interval [1,∞]:

(a) f(x) is positive (f(x) > 0)

(b) f(x) is continuous

(c) f(x) is decreasing (f ′(x) < 0).

Then, if

∫ ∞

1

f(x)dx converges,
∞∑
n=1

an also converges and if

∫ ∞

1

f(x)dx

diverges,
∞∑
n=1

an also diverges.

Usually, it will be an integral that is pretty simple. I have never seen a problem that
involves a very tedious integral. Assuming you are comfortable with the integration
techniques we covered in this class, if you find yourself scratching your head trying to
use the integral test, it is probably not the right approach. The integral test also has
some hypotheses that you must satisfy before using it! You should check these on an
exam if they are not obvious.

3. The Direct Comparison Test: This test is most commonly used to show that a series
converges. It is usually used when the series is the ratio of polynomials (sometimes
with square roots or cube roots, too). The statement of the test is:

For a series
∞∑
n=1

an, if there exists a sequence bn such that an ≤ bn and

∞∑
n=1

bn converges, then
∞∑
n=1

an converges, too.

The test can also be used to show that a series diverges; however, it is often more
difficult to bound a series from below than from above. For the sake of completeness,
the test is also given as:

For a series
∞∑
n=1

an, if there exists a sequence bn such that bn ≤ an and

∞∑
n=1

bn diverges, then
∞∑
n=1

an diverges, too.
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4. The Limit Comparison Test: This test is very similar to the direct comparison
test. However, it is easier to show that a series diverges with this test. Again, it is
used when the series is a ratio of polynomials or square and cube roots of polynomials.
The statement of the test is:

For a series
∞∑
n=1

an such that an > 0, if there exists a sequence bn such

that bn > 0 and lim
n→∞

an
bn

= L > 0 and L is finite, then
∞∑
n=1

an behaves

like
∞∑
n=1

bn. That is, if
∞∑
n=1

bn converges, then
∞∑
n=1

an also also converges;

and if
∞∑
n=1

bn diverges, then
∞∑
n=1

an also diverges.

This test is very useful for ratios of polynomials that contain square roots or cube
roots. There are a few things to be mindful of when using this test. First, you want to
compare the series to something that you already know converges or diverges. If you
pick a bn whose convergence you do not already know, there is no point in using this
test. Usually, you will pick your bn to be something of the form

1

nα
.

Second, you want to be sure that the terms of both the series are always positive.
This test would not work for an alternating series!

5. The Alternating Series Test: This test is used for series that look like

∞∑
n=1

(−1)nan.

The statement of the test is:

For a series
∞∑
n=1

(−1)nan, if the following conditions hold:

(a) an is decreasing (an > an+1 for n large enough)

(b) lim
n→∞

an = 0,

then the series
∞∑
n=1

(−1)nan converges.
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This test ONLY proves convergence. That is, if one of the conditions in the test is
not met, it does not mean that the series diverges. So, you should NEVER write
something like ”by the alternating series test, the series diverges”!! Also, this test can
only be used for series that have (−1)n or (−1)n+1; simply having terms that become
negative (like sin(n)) does not allow you to use the alternating series test.

6. The Ratio Test: The ratio test allows you to determine if a series that has powers,
exponentials, or factorials. The statement of the test is:

For a series
∞∑
n=1

an, calculate the following quantity:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

If

(a) L < 1, the series converges absolutely

(b) L > 1, the series diverges

(c) L = 1, the test is inconclusive. You cannot say anything about the
series and must try a different test.

This test can be used on almost anything: polynomials, alternating series, exponentials,
factorials, etc. You should usually resort to this test if your series includes many
different terms like factorials and exponentials or exponentials and powers. Note that
we can use the ratio test on an alternating series if the alternating series test seems
too difficult to employ. The absolute values in the limit will negate any oscilations
between 1 and -1 in the alternating series.

If you are ever completely stuck on what to do, you can try this test because it will
always spit out an answer. As long as the limit is not equal to one, you will be able to
provide an answer on an exam if you use this test.

7. The Root Test: The root test is usually only used in very specific circumstances:
when the entire series is raised to the power n. The statement of the test is:
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For a series
∞∑
n=1

an, calculate the following quantity:

lim
n→∞

n
√
|an| = L

If

(a) L < 1, the series converges absolutely

(b) L > 1, the series diverges

(c) L = 1, the test is inconclusive. You cannot say anything about the
series and must try a different test.

Note that the conditions are the same as those of the ratio test. This test you will
probably use the least. It is really only useful for series that have forms like(

n3

n7 + 1

)n

or

(
cos(n)

n2 + 7

)n

If you want a concise version of above, here is a table that you can reference.

If the series looks like... Use this test...

The limit of an does not go to zero Divergence Test

Terms that are like
polynomial of n

polynomial of n
or

p
√
polynomial of n

q
√
polynomial of n

Limit Comparison Test

Terms involve n!, nk, an, or nn Ratio Test

Terms are raised to the n-th power, e.g., (an)
n Root Test

Terms look like a function f(n) that can be integrated Integral Test

Terms are of the form 1/np p-Series Test

Terms that have (−1)n First use alternating series.
If the limit is hard to calcu-
late, try the ratio test

Terms that can be bounded above by
1

np
Direct Comparison Test
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