
Math 1301

Series Practice Solutions

Determine if the following series converge or diverge.
For the solutions, I will make some remarks about how to reason through each problem.
Then, I will write the solution as a ”proof”. These are mathematical arguments you are
making; you should have some structure to them.

1.
∞∑
n=1

1

n3 + 6

Claim: The series
∞∑
n=1

1

n3 + 6
converges.

Proof. Let an =
1

n3 + 6
. Consider the following string of inequalities:

n3 + 6 > n3 ⇒ 1

n3
<

1

n3 + 6
= an.

Hence,
∞∑
n=1

1

n3
<

∞∑
n=1

an. The former series converges via the p-test using p = 3. The

Direct Comparison Test then yields that
∞∑
n=1

an also converges.

2.
∞∑
n=8

ln2(n)

n

Remarks: Whenever the series has a 1/n and ln(n) terms, its usually going to require
the integral test.

Claim: The series
∞∑
n=8

ln2(n)

n
diverges.

Proof. Let an =
ln2(n)

n
and set f(n) = an. To use the integral test, we must show that

f(x) is positive, continuous, and decreasing on the interval I = [8,∞).
f is positive: On the interval I, the natural log, and hence its square, and 1/x are
positive. Hence, their product is also positive. Thus, f is positive on I.
f is continuous: On the interval I, the natural log, and hence its square, and 1/x are
continuous. Hence, their product is also continuous. Thus, f is continuous on I.
f is decreasing: Consider the derivative of f given by

f ′(x) =
2 ln(x) 1

x
· x− 1 · ln2 (x)

x2
=

ln(x)(2− ln(x))

x2
.
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On the interval I, (2− ln(x)) < 0 and ln(x) > 0. It follows that f ′(x) < 0 on I. Thus,
f is decreasing on I.

We have now satisfied all the hypotheses to apply the integral test. We calculate∫ ∞

8

f(x)dx =

∫ ∞

8

ln2(x)

x
dx =

u=ln(x)

∫ ∞

ln(8)

u2du = lim
c→∞

[
u3

3

]c
ln(8)

→ ∞.

As the integral of f(x) on I does not converge, the integral test provides that
∞∑
n=8

an

also diverges.

3.
∞∑
n=1

n√
n3 + n2 + 1

Remarks: When you have a ratio of polynomials, it’s a good strategy to compare the
highest orders of the numerators and denominators. The order of the numerator is
clearly 1. The order of the denominator is 3/2. Thus, the series is likely to behave like
the series 1/n1/2. Since the series of 1/n1/2 diverges, we should use the limit comparison
test with bn = 1/n1/2.

Claim: The series
∞∑
n=1

n√
n3 + n2 + 1

diverges.

Proof. Let an =
n√

n3 + n2 + 1
. Consider the sequence bn =

1

n1/2
. Note that both

an, bn > 0, so we can use the Limit Comparison Test. We calculate

lim
n→∞

an
bn

= lim
n→∞

n3/2

√
n3 + n2 + 1

= lim
n→∞

√
n3

n3 + n2 + 1
=

√
lim
n→∞

n3

n3 + n2 + 1
=

√
1 = 1,

where the third equality holds because the square root function is continuous for all

positive real numbers. As the series
∞∑
n=1

bn by the p-series test using p = 1/2, the Limit

Comparison Test yields that
∞∑
n=1

an also diverges.

4.
∞∑
n=1

(−1)n
n3

7n+7

This series is alternating since it contains the terms (−1)n. It follows that we can use
the alternating series test of the ratio test. Because the series contains a 7n+7 term,
we should use the ratio test.

Claim: The series
∞∑
n=1

(−1)n
n3

7n+7
converges.
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Proof. Let an = (−1)n
n3

7n+7
. We calculate the value lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ to be

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1(n+ 1)3

7n+8
· 7n+7

(−1)nn3

∣∣∣∣ = lim
n→∞

n3

7(n+ 1)3
=

1

7
.

As L < 1, the Ratio Test provides that
∞∑
n=1

an converges.

5.
∞∑
n=1

n3 + 4n2 − 3n+ 8

8n2 − 3n3 + 6n− 47

Remarks: This problem is similar to problem 3. We see the orders of the numerator
and denominator are both 3. We know from the second exam that the limit is the ratio
of the coefficients of n3, which is not zero.

Claim: The series
∞∑
n=1

n3 + 4n2 − 3n+ 8

8n2 − 3n3 + 6n− 47
diverges

Proof. Let an =
n3 + 4n2 − 3n+ 8

8n2 − 3n3 + 6n− 47
. Consider the limit

lim
n→∞

an = lim
n→∞

n3 + 4n2 − 3n+ 8

8n2 − 3n3 + 6n− 47
= −1

3
.

As the limit of an is nonzero, the Divergence Test provides that
∞∑
n=1

an diverges.

6.
∞∑
n=1

(n+ 1)!

nn

This problem is a standard ratio test example because the series includes exponential
and factorial terms.

Claim: The series
∞∑
n=1

(n+ 1)!

nn
converges.

Proof. Let an =
(n+ 1)!

nn
. We calculate the value lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ to be

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 2)!

(n+ 1)n+1
· nn

(n+ 1)!)

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 2)(n+ 1)!

(n+ 1)n(n+ 1)
· nn

(n+ 1)!)

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n+ 2)(n+ 1)!

(n+ 1)n(n+ 1)
· nn

(n+ 1)!)

∣∣∣∣ = lim
n→∞

∣∣∣∣ nn(n+ 2)

(n+ 1)n(n+ 1)

∣∣∣∣ = lim
n→∞

∣∣∣∣( n

n+ 1

)n
(n+ 2)

(n+ 1)

∣∣∣∣
= lim

n→∞

(
n

n+ 1

)n
(n+ 2)

(n+ 1)
= lim

n→∞

(
n

n+ 1

)n

· lim
n→∞

(n+ 2)

(n+ 1)
=

1

e
· 1 =

1

e
.
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As L < 1, the Ratio Test provides that
∞∑
n=1

an converges.

7.
∞∑
n=1

1

n(e2πn − 1)

Remarks: There are no terms in the numerator, that is a good sign that the series is
likely to converge. There is also an exponential in the denominator. As exponentials
grow faster than any polynomial, you should have the idea that this series probably
converges. Further, exponentials indicate this series is a good candidate to use the
ratio test.

Claim: The series
∞∑
n=1

1

n(e2πn − 1)
converges.

Proof. Let an =
1

n(e2πn − 1)
. First, we have that

n
(
e2πn − 1

)
>

(
e2πn − 1

)
⇒ 1

n (e2πn − 1)
<

1

(e2πn − 1)
.

Let bn =
1

(e2πn − 1)
. We want to show that

∞∑
n=1

bn converges. We calculate the value

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ to be

L = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

e2πn+2π − 1
· e

2πn − 1

1

∣∣∣∣ = lim
n→∞

e2πn − 1

e2πe2πn − 1
=

1

e2π

As L < 1, the Ratio Test provides
∞∑
n=1

bn converges. It now follows from the Direct

Comparison Test that
∞∑
n=1

an also converges.

This series has a nice value:

∞∑
n=1

1

n(e2πn − 1)
= ln

(
4
√
2
)
− 1

8
ln(π) +

1

2
ln

(
Γ

(
3

4

))
− π

24

where

Γ

(
3

4

)
=

∫ ∞

0

x−1/4e−xdx.
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8.
∞∑
n=1

ln

(
n

2n+ 1

)
Remarks: At first glance, it does not seem like any of the tests we have could handle
this. If you ever hit a point like this, you should always just take the limit to see if it
does not go to zero. This will be the case for this problem.

Claim: The series
∞∑
n=1

ln

(
n

2n+ 1

)
diverges.

Proof. Let an = ln

(
n

2n+ 1

)
. Consider the limit

lim
n→∞

an = lim
n→∞

ln

(
n

2n+ 1

)
= ln

(
lim
n→∞

n

2n+ 1

)
= ln

(
1

2

)
,

where the second equality because the natural log function is continuous for all positive

real numbers. As the limit of an is nonzero, the Divergence Test provides that
∞∑
n=1

an

diverges.

9.
∞∑
n=1

1 · 3 · 5 · · · ·(2n− 1)

5nn!

Remarks: The terms of the series include exponentials and factorials. The only test
we have to deal with these is the ratio test. When you see a series with terms like this,
you should use the ratio test.

Claim: The series
∞∑
n=1

1 · 3 · 5 · · · ·(2n− 1)

5nn!
converges.

Proof. Let an =
1 · 3 · 5 · · · ·(2n− 1)

5nn!
. We calculate the value lim

n→∞
|an+1

an
| to be

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1 · 3 · 5 · · · · · (2n− 1)(2n+ 1)

5n+1(n+ 1)n!
· 5nn!

1 · 3 · 5 · · · · · (2n− 1)

= lim
n→∞

(2n+ 1)

5(n+ 1)
=

2

5

As L < 1, the Ratio Test provides that
∞∑
n=1

an converges.
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