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Part 1. (20 points)
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Part 2. (10 points) Consider the two power series given by

J0(x) =
↓∑

n=0

(↑1)
nx2n

22n(n!)2
and J1(x) =

↓∑
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(↑1)
nx2n+1
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These are called Bessel Functions of the first kind.

Q1 Determine the radii of convergence of J0(x) and J1(x).

Q2 Show that y(x) = J0(x) solves the di!erential equation

x2y↔↔(x) + xy↔(x) + x2y(x) = 0.
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Part 3 (15 points) Evaluate the following integrals.
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Part 4. (15 points)

Q1 If f(x) =
↓∑

n=1
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n
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Part 5. (15 points)

Q1 Consider the parametric equations

x(t) = et cos(t) y(t) = et sin(t)

Eliminate the parameter and find
dy

dx
in terms of t.

Q2 Find the length of the polar curve of r =
1

ω
from 0 ↓ ω ↓ 2ε

Q3 Eliminate the parameter of the parametric equations x = 2 cos(ω), y = 1 + sin(ω). Find the

points of the horizontal and vertical tangent lines.
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Part 6. (10 points)

Q1 The general solution to
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=
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Part 7 (20 points) Determine if the following series converge or diverge. Show your work and state

any necessary hypotheses.
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Part 8 (20 points) Define the function f(x) =

∫ x
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Part 9 (20 points) Suppose that y = f(x) is a solution to the di!erential equation

dy

dx
= yx ln(x) + k sin(x)

where k > 0 and f(1) = 4.

Q1 The second order Taylor polynomial of f(x) at x = 1 is given by

Q2 If k = 0, then the solution to the initial value problem is given by

Q3 The domain of f(x) is
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Part 10 (25 points) Define the function g(x) = xex.

Q1 Calculate

∫ 1

0

g(x) dx in two ways: an integration techique and a power series technique.

Q2 y = g(x) satisfies the following di!erential equation .

Q3 The above di!erential equation is SEPARABLE or NON-SEPARABLE.
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Part 11 Extra space for work

End of Exam. Check your work!
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