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Part 1. (20 points)
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radius oFf convergence
Part 2. (10 points) Find the intervet-ot-eonvergenee for the following power series.
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Part 3 (15 points) Evaluate the following integrals.
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Part 4. (15 points)
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Part 5. (15 points)
2 42
= 1 and find the slope of the tangent

Q1 Find a parametric equation for the equation — 5+ 5 5]
line at an arbitrary point using the parametrlc equatlons.
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Q2 Find the length of the polar curve of r = e?’? from 0 < 0 < /2

dr 2

r=ec o r2+ (36
dr_ 972 = e®+ge®=Te°
d6 2

/a2

- 2’

-!4r=+<—:’.-s> s

-wlz zlw/"

f =/5' e = \[?(e'“’/q_,)

)
Q3 Find the values of theta that the polar curve r = 1+cos(f) has vertical and horizontal tangent

lines. dy .
r=1+cos(O) a6 =0 = 2cos(0)-1= cos(8)+1=
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Part 6. (10 points)
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Part 7 (20 points) Determine if the following series converge or diverge. Show your work and state
any necessary hypotheses.
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Part 8 (20 points) Define the function f(x) = arctan(In(x + 1)) — arccos(In(vx2 + 2z + 1))
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Part 9 (20 points) Define the function g(z) = a”

Q1 Use logarithmic differentiation to prove ¢'(z).

— R a
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0 2n
Part 10 (25 points) Consider the power series h(z) = E (—1)”+1x—.
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Part 11 Extra space for work

End of Exam. Check your work!



