

Math 1301 Practice Midterm 3 Version 2

Vanderbilt University

1 October 2025

Name: _____

Please do not open the exam until instructed to do so.

You are allowed a one-page (double-sided) formula sheet.

Your instructor may ask to see your formula sheet.

No calculators, phones, computers, smart watches, etc. are permitted.

The Vanderbilt Honor Code applies.

Part 1. (25 points) Determine if the following series converge or diverge. Show your work and clearly state any convergence divergence tests you use.

$$\mathbf{Q1} \sum_{n=0}^{\infty} \frac{5000^n}{n! \sin^8(n)}$$

$$\mathbf{Q2} \sum_{n=1}^{\infty} \left(\frac{n}{n^4 - 3n^2 + 3^n} \right)^{2n}$$

$$\mathbf{Q3} \sum_{n=2}^{\infty} \frac{\ln(\ln(n))}{n \ln(n)}$$

$$\mathbf{Q4} \sum_{n=2}^{\infty} \frac{\cos(n)}{\sqrt{3n-5}}$$

$$\mathbf{Q5} \sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{n^n}$$

$$\mathbf{Q6} \sum_{n=1}^{\infty} \frac{(-1)^n n}{2n-1}$$

Part 2. (10 points) Find the interval of convergence for the following power series.

$$p(x) = \sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln(n)} (x-1)^n$$

Part 3 (10 points) Determine if the following are true or false. If the statement is false, provide a counter-example; if the statement is true, try to justify your answer.

Q1 If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} -a_n$ converge, then $\sum_{n=1}^{\infty} |a_n|$ converges.

Q2 If $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} (a_n + b_n)$ converges.

Q3 If $\lim_{n \rightarrow \infty} \left| \frac{a_n}{a_{n+1}} \right| < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.

Q4 The sum of the telescoping series $\sum_{n=1}^{\infty} (a_n - a_{n+1})$ is a_1 .

Q5 The 37th partial sum for the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 5}$ is an overestimate.

Q6 Every convergent series must pass the ratio test.

Q7 If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges.

Q8 If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge, then $\sum_{n=1}^{\infty} a_n b_n$ also converges.

Q9 A power series always converges at at least one point.

Q10 If the series $\sum_{n=1}^{\infty} a_n$ converges and $a_n > 0$, then $\sum_{n=1}^{\infty} (a_n)^2$ converges.

Part 4. (15 points) Showing work is not required but partial credit may be awarded if you do.

Q1 The value of $\sum_{n=0}^{\infty} \frac{45^{n+1}}{3^{4n} n!}$ is

Q2 The number of terms to estimate $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ with an error of less than $\frac{1}{100}$ is

Q3 Use power series to evaluate following limit.

$$\lim_{x \rightarrow 0} \frac{\sin(x) - x}{x^3}$$

Part 5. (20 points) Showing work is not required but partial credit may be awarded if you do.

Q1 Find a series representation for π using $\tan^{-1}(x)$.

Q2 Find the first four terms in the Taylor series centered at $x = 1$ for $g(x) = 5^x$.

Part 6. (10 points) Use power series to evaluate the integral

$$\int \ln(x) \arctan(x) dx.$$

Hint: Use integration by parts first.

Part 7. (10 points) Prove the identity $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ in the following steps:

Q1 Find the power series representation of $p(x) = \frac{\sin(\sqrt{x})}{\sqrt{x}}$.

Q2 Find the zeros of $p(x)$.

Q3 Use the following fact to prove the result: *For a polynomial $p(x) = a_n x^n + \dots + a_1 x + a_0$ whose roots are r_1, \dots, r_n ,*

$$\frac{1}{r_1} + \dots + \frac{1}{r_n} = -\frac{a_1}{a_0}.$$