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Part 1. (25 points) Determine if the following series converge or diverge. Show your work and
clearly state any convergence divergence tests you use.

Q1
→∑

n=0

(→1)n

4n+1

Q2
→∑

n=1

n+ 2↑
n4 + 1

Q3
→∑

n=3

ln(n)

n3
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Q4
→∑

n=1

nn

(n!)2

Q5
→∑

n=3

1

(ln(n))ln(n)

Q6
→∑

n=1

ln

(
n5

5n5 + 4n3 + 1

)
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Therefore the series converges via the ratio test
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compute 100 en 5ns 4ns en 15 0

So diverges via divergence test
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Part 2. (10 points) Find the interval of convergence for the following power series.2

p(x) =
→∑

n=1

n5

5nn!
(x→ 2)n

i center 2

ii anti nti 5 5mn
5 5 nti n ns X 2

n 1 5

5h6 45
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iii at o

Therefore ROC 00 and 10C IR
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Part 3 (20 points) Determine if the following are true or false. If the statement is false, provide a
counter-example; if the statement is true, try to justify your answer.

Q1 If lim
n↑→

an = 0, then
→∑

n=1

an converges.

Q2 If
→∑

n=1

an diverges, then
→∑

n=1

(→1)nan also diverges.

Q3 If lim
n↑→

∣∣∣∣
an+1

an

∣∣∣∣ =
ω

e
, then

∑

n=1

an diverges.

Q4 If
→∑

n=1

an and
→∑

n=1

bn both diverge, then
→∑

n=1

(an + bn) also diverges.

Q5 If
→∑

n=1

an converges, then
→∑

n=1

(an)
2 also converges.

False let an 4h

False let an In

True Test ratio test yields convergence

False set an 1 and bn 1 n 1

False consider an 1
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Q6 If
→∑

n=1

an <
→∑

n=1

bn and
→∑

n=1

bn diverges, then
→∑

n=1

an also diverges.

Q7 If
→∑

n=1

an conditially converges, then
→∑

n=1

|an| must diverge.

Q8 If
→∑

n=1

an and
→∑

n=1

bn both diverge, then
→∑

n=1

anbn also diverges.

Q9 If
→∑

n=1

an diverges, then lim
n↑→

an = 0.

Q10 The series
→∑

n=1

(→1)n cos(nω)

n2
converges by the alternating series test.

False to use Direct Comparison Test to show

divergence you need to bound an from below

True by definition of conditional convergence

False set an bn In

False set an n

False 1 cos nti

ma na converges via p series
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Part 4. (15 points) Showing work is not required but partial credit may be awarded if you do.

Q1 The value of
→∑

n=1

6n+2

32n
is

Q2 The value of
→∑

n=1

1

n2 + n
is

Q3 The domain of the function f(p) is where f(p) is given by

f(p) =
→∑

n=1

ln(1 + np)

np

72
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un 2 36 6

n 32 ne an n
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Part 5. (20 points) Showing work is not required but partial credit may be awarded if you do.

Q1 Find a power series representation for f(x) =
x→ 5

(1→ x)2
and determine its radius of convergence.

Q2 Find the first four terms in the Taylor series centered at x = 3 for g(x) = sin2(x).

9 x 2 0s 2x 9 3 2 0s 6

9 x 45in 2x 9 s 45in 6
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Part 6. (10 points) Showing work is not required but partial credit may be awarded if you do.

Q1 Find the power series representation of h(x) = ln(1 + x2).

Q2 Using your solution to Q1, determine the value of
→∑

n=1

(→1)n

n(2n+ 1)
. (Hint:

∫ 1

0

x2n =
1

2n+ 1
)

End of Exam. Check your work!
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