

Math 1301 Practice Midterm 3 Version 1

Vanderbilt University

1 October 2025

Name: _____

Please do not open the exam until instructed to do so.

You are allowed a one-page (double-sided) formula sheet.

Your instructor may ask to see your formula sheet.

No calculators, phones, computers, smart watches, etc. are permitted.

The Vanderbilt Honor Code applies.

Part 1. (25 points) Determine if the following series converge or diverge. Show your work and clearly state any convergence divergence tests you use.

$$\mathbf{Q1} \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}}$$

$$\mathbf{Q2} \sum_{n=1}^{\infty} \frac{n+2}{\sqrt{n^4+1}}$$

$$\mathbf{Q3} \sum_{n=3}^{\infty} \frac{\ln(n)}{n^3}$$

$$\mathbf{Q4} \sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$$

$$\mathbf{Q5} \sum_{n=3}^{\infty} \frac{1}{(\ln(n))^{\ln(n)}}$$

$$\mathbf{Q6} \sum_{n=1}^{\infty} \ln \left(\frac{n^5}{5n^5 + 4n^3 + 1} \right)$$

Part 2. (10 points) Find the interval of convergence for the following power series.2

$$p(x) = \sum_{n=1}^{\infty} \frac{n^5}{5^n n!} (x-2)^n$$

Part 3 (20 points) Determine if the following are true or false. If the statement is false, provide a counter-example; if the statement is true, try to justify your answer.

Q1 If $\lim_{n \rightarrow \infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.

Q2 If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} (-1)^n a_n$ also diverges.

Q3 If $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{\pi}{e}$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Q4 If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both diverge, then $\sum_{n=1}^{\infty} (a_n + b_n)$ also diverges.

Q5 If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} (a_n)^2$ also converges.

Q6 If $\sum_{n=1}^{\infty} a_n < \sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ also diverges.

Q7 If $\sum_{n=1}^{\infty} a_n$ conditionally converges, then $\sum_{n=1}^{\infty} |a_n|$ must diverge.

Q8 If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both diverge, then $\sum_{n=1}^{\infty} a_n b_n$ also diverges.

Q9 If $\sum_{n=1}^{\infty} a_n$ diverges, then $\lim_{n \rightarrow \infty} a_n = 0$.

Q10 The series $\sum_{n=1}^{\infty} \frac{(-1)^n \cos(n\pi)}{n^2}$ converges by the alternating series test.

Part 4. (15 points) Showing work is not required but partial credit may be awarded if you do.

Q1 The value of $\sum_{n=1}^{\infty} \frac{6^{n+2}}{3^{2n}}$ is

Q2 The value of $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ is

Q3 The domain of the function $f(p)$ is where $f(p)$ is given by

$$f(p) = \sum_{n=1}^{\infty} \frac{\ln(1 + n^p)}{n^p}$$

Part 5. (20 points) Showing work is not required but partial credit may be awarded if you do.

Q1 Find a power series representation for $f(x) = \frac{x - 5}{(1 - x)^2}$ and determine its radius of convergence.

Q2 Find the first four terms in the Taylor series centered at $x = 3$ for $g(x) = \sin^2(x)$.

Part 6. (10 points) Showing work is not required but partial credit may be awarded if you do.

Q1 Find the power series representation of $h(x) = \ln(1 + x^2)$.

Q2 Using your solution to Q1, determine the value of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n+1)}$. (Hint: $\int_0^1 x^{2n} = \frac{1}{2n+1}$)